OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 6 — Feb. 20, 2003
  • pp: 883–892

Parameterization and analysis of the optical absorption and scattering coefficients in a western Norwegian fjord: a case II water study

Børge Hamre, Øyvind Frette, Svein Rune Erga, Jakob J. Stamnes, and Knut Stamnes  »View Author Affiliations


Applied Optics, Vol. 42, Issue 6, pp. 883-892 (2003)
http://dx.doi.org/10.1364/AO.42.000883


View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on statistical analyses of optical properties measured during a whole year of monthly cruises in a Norwegian fjord, we constructed a two-component model for the absorption and scattering coefficients for visible light. The input to the model is the concentrations of yellow substance and chlorophyll a. Because of the presence of a significant amount of nonalgal particles in coastal water, we assume that the absorption and scattering coefficients approach constant background values when the concentration of chlorophyll a approaches zero. The model works reasonably for a variety of optical conditions encountered throughout the year, with a possible exception during a bloom of the Emiliania huxleyi algae in June.

© 2003 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics

History
Original Manuscript: November 4, 2002
Published: February 20, 2003

Citation
Børge Hamre, Øyvind Frette, Svein Rune Erga, Jakob J. Stamnes, and Knut Stamnes, "Parameterization and analysis of the optical absorption and scattering coefficients in a western Norwegian fjord: a case II water study," Appl. Opt. 42, 883-892 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-6-883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton: Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. (Elsevier, New York, 1989), pp. 123–127.
  2. W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, T. J. Smayda, Y. Shimizu, eds. (Elsevier, New York, 1993), pp. 687–692.
  3. D. L. Aksnes, A. C. W. Utne, “A revised model of visual range in fish,” Sarsia 82, 137–147 (1997).
  4. M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995). [CrossRef]
  5. H. C. Eilertsen, O. Holm-Hansen, “Effects of high latitude UV radiation on phytoplankton and nekton modelled from field measurements by simple algorithms,” Polar Res. 19, 173–182 (2000). [CrossRef]
  6. Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994). [CrossRef] [PubMed]
  7. G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, Cambridge, England, 1999). [CrossRef]
  8. Ø. Frette, J. J. Stamnes, K. Stamnes, “Optical remote sensing of marine constituents in coastal waters: a feasibility study,” Appl. Opt. 37, 8318–8326 (1998). [CrossRef]
  9. Ø. Frette, S. R. Erga, J. J. Stamnes, K. Stamnes, “Optical remote sensing of waters with vertical structure,” Appl. Opt. 40, 1478–1487 (2001). [CrossRef]
  10. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981). [CrossRef]
  11. H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998). [CrossRef]
  12. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001). [CrossRef]
  13. S. R. Erga, B. R. Heimdal, “Ecological studies on the phytoplankton of Korsfjorden, western Norway. The dynamics of a spring bloom seen in relation to hydrographical conditions and light regime,” J. Plankton Res. 6, 67–90 (1984). [CrossRef]
  14. S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, Western Norway. 1. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).
  15. W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993). [CrossRef]
  16. N. K. Højerslev, E. Aas, “Spectral light absorption by yellow substance in the Kattegat-Skagerrak area,” Oceanologia 43, 39–60 (2001).
  17. S. W. Jeffrey, G. F. Humphrey, “New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Physiol. Pflanzen 167, 191–194 (1975).
  18. S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guideline to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO Publishing, Paris, France, 1997), pp. 597–615.
  19. N. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).
  20. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995). [CrossRef]
  21. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within waters. II. Spherical cells,” New Phytol. 75, 21–36 (1975). [CrossRef]
  22. A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. Part A 28, 1375–1393 (1981). [CrossRef]
  23. A. Morel, “Light and marine photosynthesis: a model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991). [CrossRef]
  24. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998). [CrossRef]
  25. C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998). [CrossRef]
  26. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  27. A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993). [CrossRef]
  28. H. R. Gordon, T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438–1454 (2001). [CrossRef]
  29. N. K. Højerslev, E. Aas, “Spectral light absorption by gelbstoff in coastal waters displaying highly different concentrations,” in Ocean Optics XIV CD-ROM, S. V. Ackleson, ed. (U.S. Office of Naval Research, Washington, DC., 1998).
  30. S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999). [CrossRef]
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).
  32. D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001). [CrossRef]
  33. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies,(Springer-Verlag, New York, 1983). [CrossRef]
  34. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  35. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981). [CrossRef] [PubMed]
  36. A. Morel, “Optical properties of pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nelson, eds. (Academic, New York, 1974), pp. 1–24.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited