OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 6 — Feb. 20, 2003
  • pp: 922–930

Complex refractive index of ammonium nitrate in the 2–20-μm spectral range

Maurice A. Jarzembski, Mark L. Norman, Kirk A. Fuller, Vandana Srivastava, and Dean R. Cutten  »View Author Affiliations

Applied Optics, Vol. 42, Issue 6, pp. 922-930 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using high-resolution Fourier-transform infrared absorbance and transmittance spectral data for ammonium sulfate (AMS), calcium carbonate (CAC), and ammonium nitrate (AMN), we made comparisons with previously published complex refractive-index data for AMS and CAC to infer experimental parameters to determine the imaginary refractive index for AMN in the infrared wavelength range from 2 to 20 μm. Subtractive Kramers-Kronig mathematical relations were applied to calculate the real refractive index for the three compositions. Excellent agreement for AMS and CAC with the published values was found, validating the complex refractive index obtained for AMN. We performed backscatter calculations using a log-normal size distribution for AMS, AMN, and CAC aerosols to show differences in their backscattered spectra.

© 2003 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.3030) Scattering : Index measurements
(300.0300) Spectroscopy : Spectroscopy
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: May 3, 2002
Revised Manuscript: October 25, 2002
Published: February 20, 2003

Maurice A. Jarzembski, Mark L. Norman, Kirk A. Fuller, Vandana Srivastava, and Dean R. Cutten, "Complex refractive index of ammonium nitrate in the 2–20-μm spectral range," Appl. Opt. 42, 922-930 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  2. R. J. Charlson, T. M. L. Wigley, “Sulfate aerosol and climatic change,” Sci. Am. 270, 48–57 (1994). [CrossRef]
  3. W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968). [CrossRef]
  4. K. F. Palmer, D. Williams, “Optical constants of sulfuric acid: application to Venus?” Appl. Opt. 14, 208–219 (1975). [PubMed]
  5. L. J. Richwine, M. L. Clapp, R. E. Miller, “Complex refractive indices in the infrared of nitric acid trihydrate aerosols,” Geophys. Res. Lett. 22, 2625–2628 (1995). [CrossRef]
  6. O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, ammonium oxide, and sodium chloride,” J. Geophys. Res. 81, 5733–5748 (1976). [CrossRef]
  7. F. E. Volz, “Infrared optical constants of ammonium sulfate, Sahara dust, vocanic pumice, and flyash,” Appl. Opt. 12, 564–568 (1973). [CrossRef] [PubMed]
  8. J. B. Pollack, O. B. Owen, B. N. Khare, “Optical properties of some terrestrial rocks and glasses,” Icarus 19, 372–389 (1973). [CrossRef]
  9. O. Toon, J. B. Pollack, C. Sagan, “Physical properties of the particles composing the Martian dust storm of 1971–1972,” Icarus 30, 663–696 (1977). [CrossRef]
  10. D. P. Walter, D. E. Cooper, J. E. van der Laan, E. R. Murray, “Carbon dioxide laser backscatter signature from laboratory generated dust,” Appl. Opt. 25, 2506–2513 (1986). [CrossRef]
  11. T. Roush, J. Pollack, J. Orenberg, “Derivation of midinfrared (5–25 μm) optical constants of some silicates and palagonite,” Icarus 94, 191–208 (1991). [CrossRef]
  12. A. Ben-David, “Wavelength dependence of backscattering and extinction of kaolin dust at CO2 laser wavelengths: effect of multiple scattering,” Appl. Opt. 32, 1598–1605 (1993). [CrossRef] [PubMed]
  13. F. F. Bentley, L. D. Smithson, A. L. Rozek, Infrared Spectra and Characteristic Frequencies ∼700-300 cm-1: A Collection of Spectra Interpretation and Bibliography (Interscience, New York, 1968).
  14. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, New York, 1970).
  15. R. J. Keller, Sigma Library of FT-IR Spectra (Sigma Chemical Company, St. Louis, Mo., 1986), Vol. 1.
  16. M. R. Querry, G. Osborne, K. Lies, R. Jordan, R. M. Coveney, “Complex refractive index of limestone in the visible and infrared,” Appl. Opt. 17, 353–356 (1978). [CrossRef] [PubMed]
  17. J. C. Chow, J. G. Watson, D. H. Lowenthal, P. A. Solomon, K. L. Magliano, S. D. Ziman, L. W. Richards, “PM 10 source apportionment in California’s San Joaquin Valley,” Atmos. Environ. Part A 26, 3335–3354 (1992). [CrossRef]
  18. J. C. Chow, J. G. Watson, D. H. Lowenthal, P. A. Solomon, K. L. Magliano, S. D. Ziman, L. W. Richards, “PM10 and PM2.5 compositions in California’s San Joaquin Valley,” Aerosol Sci. Technol. 18, 105–128 (1993). [CrossRef]
  19. U.S. Environmental Protection Agency, Air Quality Criteria for Particulate Matter, National Center for Environmental Assessment Office of Research and Development, EPA/600/P-95/001aF (U.S. Environmental Protection Agency, Research Triangle, N. C., 1996),Vol. 1, pp. 6-163–6-168.
  20. K. F. Palmer, B. E. Wood, J. A. Roux, “Infrared optical properties of solid mixtures of molecular species at 20 K,” AEDC-TR-80-30 (Arnold Engineering Development Center, Arnold Air Force Base, Tenn., 1981).
  21. M. L. Clapp, D. R. Worsnop, R. E. Miller, “Frequency dependent optical constants of water ice obtained directly from aerosol extinction spectra,” J. Phys. Chem. 99, 6317–6326 (1995). [CrossRef]
  22. R. J. Keller, Sigma Chemical Company, 3050 Spruce Street, St. Louis, Missouri 63103 (personal communication, 2000–2002).
  23. W. J. Tropf, “Calcium carbonate, calcite (CaCO3),” in Handbook of Optical Constants of Solids III, (Academic, New York, 1998).
  24. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 58th ed. (CRC Press, New York, 1971), pp. E-219 and E-223.
  25. S. F. Gosse, M. Wang, D. Labrie, P. Chylek, “Imaginary part of the refractive index of sulfates and nitrates in the 0.7–2.6-μm spectral region,” Appl. Opt. 36, 3622–3634 (1997). [CrossRef] [PubMed]
  26. D. R. Cutten, M. A. Jarzembski, V. Srivastava, R. F. Pueschel, S. D. Howard, E. W. McCaul, “Boundary layer aerosol composition over Sierra Nevada Mountains using 9.11- and 10.59-μm cw lidars and modeled backscatter from size distribution data,” J. Geophys. Res. (to be published) (2002).
  27. V. Srivastava, M. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-m wavelengths,” Appl. Opt. 31, 1904–1906 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited