OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 6 — Feb. 20, 2003
  • pp: 939–951

Accurate and self-consistent ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations

Knut Stamnes, Wei Li, Banghua Yan, Hans Eide, Andrew Barnard, W. Scott Pegau, and Jakob J. Stamnes  »View Author Affiliations


Applied Optics, Vol. 42, Issue 6, pp. 939-951 (2003)
http://dx.doi.org/10.1364/AO.42.000939


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.

© 2003 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: April 1, 2002
Revised Manuscript: November 13, 2002
Published: February 20, 2003

Citation
Knut Stamnes, Wei Li, Banghua Yan, Hans Eide, Andrew Barnard, W. Scott Pegau, and Jakob J. Stamnes, "Accurate and self-consistent ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations," Appl. Opt. 42, 939-951 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-6-939


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CACS: initial comparisons with surface measurements,” Science 204, 63–66 (1980). [CrossRef]
  2. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Y. E. Sayed, B. Strum, R. C. Wrigley, C. S. Yentsch, “Nimbus 7 coastal zone color scanner: system description and initial comparisons with surface measurements,” Science 210, 60–63 (1980). [CrossRef] [PubMed]
  3. S. B. Hooker, W. E. Esias, G. C. Feldman, W. W. Gregg, C. R. McClain, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 1045661, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  4. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, X. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 5954–5964 (1989). [CrossRef]
  5. S. Saitoh, “OCTS on ADEOS,” in Oceanographic Application of Remote Sensing, M. Ikeda, F. W. Dobson, eds. (CRC Press, Boca Raton, Fla., 1995), pp. 473–480.
  6. M. Rast, J. L. Bezy, “The ESA medium resolution imaging spectrometer (MERIS): requirements to its mission and performance of its system,” in Remote Sensing in Action: Proceedings of the 21st Annual Conference of the Remote Sensing Society, P. J. Curran, Y. C. Robertson, eds. (Taylor Francis, London, 1995), pp. 125–132.
  7. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithm for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  8. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  9. R. A. Reynolds, D. Stramski, B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001). [CrossRef]
  10. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999). [CrossRef]
  11. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997). [CrossRef]
  12. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  13. M. Wang, H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50, 231–239 (1994). [CrossRef]
  14. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  15. D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999). [CrossRef]
  16. H. Fukushima, M. Toratani, “Asian dust aerosol: optical effect on satellite ocean color signal and a scheme of its correction,” J. Geophys. Res. 102, 17119–17130 (1997). [CrossRef]
  17. D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000). [CrossRef]
  18. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  19. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  20. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]
  21. A. Morel, K. J. Voss, B. Gentili, “Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields,” J. Geophys. Res. 100, 13143–13151 (1995). [CrossRef]
  22. H. Yang, H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997). [CrossRef]
  23. W. Li, K. Stamnes, “Inherent optical properties of Case I waters: a complete model suitable for use in ocean color remote sensing applications,” J. Geophys. Res., submitted for publication.
  24. B. Yan, K. Stamnes, M. Toratani, W. Li, J. J. Stamnes, “Evaluation of a reflectance model used in the SeaWiFS ocean color algorithm: implications for chlorophyll concentration retrievals,” Appl. Opt. 41, 6243–6259 (2002). [CrossRef] [PubMed]
  25. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 714–427 (1975). [CrossRef]
  26. H. R. Gordon, “Ocean color remote sensing: influence of the particle phase function and the solar zenith angle,” Eos Trans. Am. Geophys. Union 14, 1055 (1986).
  27. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  28. Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994). [CrossRef] [PubMed]
  29. G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, New York, 1999). [CrossRef]
  30. B. Yan, K. Stamnes, “Fast yet accurate computation of the complete radiance distribution in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 76, 207–223 (2003). [CrossRef]
  31. O. Frette, J. J. Stamnes, K. Stamnes, “Optical remote sensing of marine constituents in coastal waters: a feasibility study,” Appl. Opt. 37, 8318–8326 (1998). [CrossRef]
  32. O. Frette, S. R. Erga, J. J. Stamnes, K. Stamnes, “Optical remote sensing of waters with vertical structure,” Appl. Opt. 40, 1478–1487 (2001). [CrossRef]
  33. B. Yan, “Radiative transfer modeling in the coupled atmosphere-ocean system and its application to the remote sensing of ocean imagery,” Ph.D. dissertation (Department of Physics, University of Alaska, Fairbanks, Alaska, 2001).
  34. K. I. Gjerstad, “Monte Carlo simulations of radiative transport in the atmosphere and ocean,” M.Sc. thesis (Department of Physics, University of Bergen, Bergen, Norway, 2001).
  35. K. I. Gjerstad, J. J. Stamnes, J. K. Lotsberg, B. Hamre, B. Yan, K. Stamnes, “Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system,”Appl. Opt., submitted for publication.
  36. B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?” Appl. Opt. 41, 412–423 (2002). [CrossRef] [PubMed]
  37. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  38. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  39. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981). [CrossRef] [PubMed]
  40. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001). [CrossRef]
  41. T. L. Petzold, “Volume scattering functions for selected ocean waters,” Visibility Laboratory Rep. 72-78 (Scripps Institution of Oceanography, San Diego, Calif., 1972).
  42. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  43. D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited