OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 7 — Mar. 1, 2003
  • pp: 1236–1243

Laser direct writing polymeric single-mode waveguide devices with a rib structure

Alok K. Das  »View Author Affiliations


Applied Optics, Vol. 42, Issue 7, pp. 1236-1243 (2003)
http://dx.doi.org/10.1364/AO.42.001236


View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A focused argon-ion laser beam is used on a spin-coated polymeric thin-film deposited upon a SiO2/Si substrate to polymerize the core for fabrication of Gaussian profile optical channel waveguides. A rib structure that allows only the fundamental mode to propagate even with its higher dimension and high-index contrast between the core and the cladding was fabricated. When the thickness of the core-index region outside the rib section decreases, the waveguide produces higher-order modes at the output. The waveguide reported here has cross-sectional dimensions and numerical apertures that match the single-mode fibers for efficient coupling. I used a mixture of two intermiscible acrylate monomers for the cladding and the core of the waveguides. The polymerization process and its dependent dwell time or scan speed and the laser power intensity are shown. I present the operational characteristics of directional couplers using a rib waveguide structure with a core-cladding index difference.

© 2003 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.7380) Optical devices : Waveguides, channeled
(310.1860) Thin films : Deposition and fabrication
(310.2790) Thin films : Guided waves

History
Original Manuscript: April 26, 2002
Revised Manuscript: September 26, 2002
Published: March 1, 2003

Citation
Alok K. Das, "Laser direct writing polymeric single-mode waveguide devices with a rib structure," Appl. Opt. 42, 1236-1243 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-7-1236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989). [CrossRef]
  2. L. A. Hornak, Polymers for Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).
  3. R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992). [CrossRef]
  4. J. R. Hill, P. Pantelis, “Polymeric electro-optic phase modulators formed by self-alignment over channels etched into indium phosphide,” J. Appl. Phys. 70, 4649–4651 (1991). [CrossRef]
  5. R. Moosburger, K. Petermann, “4 × 4 Digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett. 10, 684–686 (1998). [CrossRef]
  6. Y. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993). [CrossRef]
  7. T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, S. Imamura, “Polymeric optical waveguide circuits formed using silicone resin,” J. Lightwave Technol. 16, 1049–1055 (1998). [CrossRef]
  8. R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguides using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989). [CrossRef]
  9. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996). [CrossRef]
  10. A. K. Das, B. S. Chaudhari, S. Ghosh, “Characteristics of polymeric optical passive single-mode waveguiding devices fabricated by an argon-ion laser,” Appl. Opt. 37, 6779–6786 (1998). [CrossRef]
  11. R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995). [CrossRef]
  12. N. Dagli, C. G. Fonstad, “Analysis of rib dielectric waveguides,” IEEE J. Quantum Electron. QE-21, 315–321 (1985). [CrossRef]
  13. S. S. Lee, S. Y. Shin, “Polarization-insensitive digital optical switch using an electro-optic polymer rib waveguide,” Electron. Lett. 33, 314–316 (1997). [CrossRef]
  14. J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991). [CrossRef]
  15. C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995). [CrossRef]
  16. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman Hall, New York, 1983).
  17. A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994). [CrossRef] [PubMed]
  18. M. K. Pandit, H. P. Chan, C. K. Chow, K. S. Chiang, S. Ghosh, A. K. Das, “A wide-angle X-junction in polymer using truncated-structure branches (TSB),” J. Lightwave Technol. 20, 86–91 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited