OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 7 — Mar. 1, 2003
  • pp: 1244–1256

Sensing and control in dual-recycling laser interferometer gravitational-wave detectors

Kenneth A. Strain, Guido Müller, Tom Delker, David H. Reitze, David B. Tanner, James E. Mason, Phil A. Willems, Daniel A. Shaddock, Malcolm B. Gray, Conor Mow-Lowry, and David E. McClelland  »View Author Affiliations


Applied Optics, Vol. 42, Issue 7, pp. 1244-1256 (2003)
http://dx.doi.org/10.1364/AO.42.001244


View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce length-sensing and control schemes for the dual-recycled cavity-enhanced Michelson interferometer configuration proposed for the Advanced Laser Interferometer Gravitational Wave Observatory (LIGO). We discuss the principles of this scheme and show methods that allow sensing and control signals to be derived. Experimental verification was carried out in three benchtop experiments that are introduced. We present the implications of the results from these experiments for Advanced LIGO and other future interferometric gravitational-wave detectors.

© 2003 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.1270) Other areas of optics : Astronomy and astrophysics

History
Original Manuscript: July 5, 2002
Revised Manuscript: November 14, 2002
Published: March 1, 2003

Citation
Kenneth A. Strain, Guido Müller, Tom Delker, David H. Reitze, David B. Tanner, James E. Mason, Phil A. Willems, Daniel A. Shaddock, Malcolm B. Gray, Conor Mow-Lowry, and David E. McClelland, "Sensing and control in dual-recycling laser interferometer gravitational-wave detectors," Appl. Opt. 42, 1244-1256 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-7-1244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Abramovici, W. Althouse, R. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. Thorne, R. Vogt, R. Weiss, S. Whitcomb, M. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  2. C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The Virgo project: a wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990). [CrossRef]
  3. K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkleff, A. Tünnermann, B. Willke, “GEO 600—a 600-m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 100–111.
  4. K. Tsubono, “300-m laser interferometer gravitational wave detector (TAMA 300) in Japan,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 112–114.
  5. G. Müller, T. Delker, D. B. Tanner, D. Reitze, “Dual-recycled cavity-enhanced Michelson interferometer for gravitational-wave detection,” Appl. Opt. 42, 1257–1268 (2003). [CrossRef] [PubMed]
  6. J. E. Mason, P. A. Willems, “Signal extraction and optical design for an advanced gravitational-wave interferometer,” Appl. Opt. 42, 1269–1282 (2003). [CrossRef] [PubMed]
  7. D. A. Shaddock, M. B. Gray, C. Mow-Lowry, D. E. McClelland, “Power-recycled Michelson interferometer with resonant sideband extraction,” Appl. Opt. 42, 1283–1295 (2003). [CrossRef] [PubMed]
  8. A. A. Michelson, E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci. 35, 333–345 (1887). [CrossRef]
  9. R. W. P. Drever, “Interferometric detectors for gravitational radiation,” in Gravitational Radiation, N. Daruelle, T. Piran, eds. (North-Holland, Amsterdam, 1983), pp. 321–328.
  10. The idea of power recycling was proposed simultaneously by R. Schilling, Max-Planck-Institut fuer Quantenoptik, Garching, Germany.
  11. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988). [CrossRef]
  12. E. S. Phinney, “The rate of neutron star binary mergers in the universe: minimal predictions for gravity wave detectors,” Astrophys. J. Lett. 380, L17–L21 (1991). [CrossRef]
  13. C. Cutler, K. S. Thorne, “An overview of gravitational-wave sources,” in Proceedings of the GR16 Conference on General Relativity and Gravitation, N. Bishop, ed. (World Scientific, Singapore, 2002). [CrossRef]
  14. J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational-wave detectors,” Phys. Lett. A 175, 273–276 (1993). [CrossRef]
  15. A. Buonanno, Y. Chen, “Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors,” Phys. Rev. D 64, 77–98 (2001). [CrossRef]
  16. K. A. Strain, K. Danzmann, P. G. Nelson, A. Rüdiger, R. Schilling, W. Winkler, “Thermal lensing in recycling interferometric gravitational wave detectors,” Phys. Lett. A 194, 124–132 (1994). [CrossRef]
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  18. M. Regehr, “Signal extraction and control for a interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1995).
  19. P. Fritschel, R. Bork, G. González, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, M. Zucker, “Readout and control of a power-recycle interferometric gravitational-wave antenna,” Appl. Opt. 40, 4988–4998 (2001). [CrossRef]
  20. B. J. Meers, A. Krolak, J. A. Lobo, “Dynamically tuned interferometers for the observation of gravitational waves from coalescing compact binaries,” Phys. Rev. D 47, 2184–2197 (1993). [CrossRef]
  21. A. Weinstein, “Advanced LIGO optical configuration, prototyping, and modeling,” Class. Quantum Grav. 19, 1575–1584 (2002). [CrossRef]
  22. A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981). [CrossRef]
  23. L. Schnupp, “Internal modulation schemes,” presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento, Italy, 2 Oct. 1988.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited