OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 7 — Mar. 1, 2003
  • pp: 1257–1268

Dual-Recycled Cavity-Enhanced Michelson Interferometer for Gravitational-Wave Detection

Guido Müller, Tom Delker, David B. Tanner, and David Reitze  »View Author Affiliations

Applied Optics, Vol. 42, Issue 7, pp. 1257-1268 (2003)

View Full Text Article

Acrobat PDF (223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The baseline design for an Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) is a dual-recycled Michelson interferometer with cavities in each of the Michelson interferometer arms. We describe one possible length-sensing and control scheme for such a dual-recycled, cavity-enhanced Michelson interferometer. We discuss the principles of this scheme and derive the first-order sensing signals. We also present a successful experimental verification of our length-sensing system using a prototype tabletop interferometer. Our results demonstrate the robustness of the scheme against deviations from the idealized design. We also identify potential weaknesses and discuss possible improvements. These results as well as other benchtop experiments that we present form the basis for a sensing and control scheme for Advanced LIGO.

© 2003 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.1270) Other areas of optics : Astronomy and astrophysics

Guido Müller, Tom Delker, David B. Tanner, and David Reitze, "Dual-Recycled Cavity-Enhanced Michelson Interferometer for Gravitational-Wave Detection," Appl. Opt. 42, 1257-1268 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Abramovici, W. Althouse, R. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoemaker, L. Sievers, R. Spero, K. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
  2. K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkleff, A. Tünnermann, and B. Willke, “GEO 600—a 600-m Laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 100–111.
  3. K. Tsubono, “300-m laser interferometer gravitational wave detector (TAMA300) in Japan,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 112–114.
  4. C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, and G. Natale, “The VIRGO project: a wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
  5. LIGO Science Collaboration, “Advanced LIGO systems design,” P. Fritschel, ed., LIGO Tech. Note T010075; available from the LIGO Document Control Center at http://antares.ligo.caltech.edu/dcc/default.htf (2001); also see documents in www.ligo.caltech.edu/ligo2.
  6. K. A. Strain, G. Müller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Sensing and control in dual-recycling laser interferometer gravitational-wave detectors,” Appl. Opt. 42, 1244–1256 (2003).
  7. J. E. Mason and P. A. Willems, “Signal extraction and optical design for an advanced gravitational-wave interferometer,” Appl. Opt. 42, 1269–1282 (2003).
  8. D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, “Power-recycled Michelson interferometer with resonant sideband extraction,” Appl. Opt. 42, 1283–1295 (2003).
  9. S. Yoshida, G. Mueller, T. Delker, Q. Shu, D. Reitze, D. B. Tanner, J. Camp, J. Heefner, B. Kells, N. Mavalvala, D. Ouimette, H. Rong, R. Adhikari, P. Fritschel, M. Zucker, and D. Sigg, “Recent development in the LIGO input optics,” in Proceedings of the Second Tama International Workshop on Gravitational Wave Detection (Universal Academy, Tokyo, Japan, 1999), pp. 51–59.
  10. D. Jackrel, “High-power high-efficiency photodiode for advanced LIGO,” LIGO Document G010359–00; available from the LIGO Document Control Center at http://antares.ligo.caltech.edu/dcc/default.htf.
  11. The optimization of the parameters, the amplitudes of the different frequency components in the various ports of the interferometer, the locking matrix, and the sensitivities were modeled with a software package called Finesse, written by Andreas Freise. Information about Finesse can be found on the Software Tools for Advanced Interferometer Configurations webpage at www.phys.ufl.edu/LIGO/LIGO/STAIC.html or at www.mpq.mpg.de/ãdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited