OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 7 — Mar. 1, 2003
  • pp: 1330–1345

Multilayer Thin-Film Structures with High Spatial Dispersion

Martina Gerken and David A. B. Miller  »View Author Affiliations


Applied Optics, Vol. 42, Issue 7, pp. 1330-1345 (2003)
http://dx.doi.org/10.1364/AO.42.001330


View Full Text Article

Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate how to design thin-film multilayer structures that separate multiple wavelength channels with a single stack by spatial dispersion, thus allowing compact manufacturable wavelength multiplexers and demultiplexers and possibly beam-steering or dispersion-control devices. We discuss four types of structure—periodic one-dimensional photonic crystal superprism structures, double-chirped structures exploiting wavelength-dependent penetration depth, coupled-cavity structures with dispersion that is due to stored energy, and numerically optimized nonperiodic structures utilizing a mixture of the other dispersion effects. We experimentally test the spatial dispersion of a 200-layer periodic structure and a 66-layer nonperiodic structure. Probably because of its greater design freedom, the nonperiodic structure can give both a linear shift with wavelength and a larger usable shift than the thicker periodic structure gives.

© 2003 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(230.4170) Optical devices : Multilayers
(260.2030) Physical optics : Dispersion

Citation
Martina Gerken and David A. B. Miller, "Multilayer Thin-Film Structures with High Spatial Dispersion," Appl. Opt. 42, 1330-1345 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-7-1330


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Hecht, Optik (Addison-Wesley, Bonn, Germany, 1989).
  2. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt. 34, 1589–1617 (1987).
  3. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351 (1994).
  4. S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett. 21, 1771–1773 (1996).
  5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
  6. S. Enoch, G. Tayeb, and D. Maystre, “Numerical evidence of ultrarefractive optics in photonic crystals,” Opt. Commun. 161, 171–176 (1999).
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999).
  8. B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020 (2000).
  9. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, Jr., “Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,” Opt. Lett. 25, 1502–1504 (2000).
  10. E. Silvestre, J. M. Pottage, P. St. J. Russell, and P. J. Roberts, “Design of thin-film photonic crystal waveguides,” Appl. Phys. Lett. 77, 942–944 (2000).
  11. A. N. Naumov, R. B. Miles, P. Barker, and A. M. Zheltikov, “Ultradispersive prisms and narrow-band tunable filters combining dispersion of atomic resonances and photonic band-gap structures,” Laser Phys. 10, 622–626 (2000).
  12. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Lett. 87, 253902–1–253902–4 (2001).
  13. T. Ochiai and J. Sanchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B 64, 245113–1–245113–7 (2001).
  14. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  15. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
  16. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
  17. P. Tournois and P. Hartemann, “Bulk chirped Bragg reflectors for light pulse compression and expansion,” Opt. Commun. 119, 569–575 (1995).
  18. N. Matuschek, F. X. Kärtner, and U. Keller, “Exact coupled-mode theories for multilayer interference coatings with arbitrary strong index modulations,” IEEE J. Quantum Electron. 33, 295–302 (1997).
  19. N. Matuschek, F. X. Kärtner, and U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
  20. N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35, 129–137 (1999).
  21. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248–1254 (1999).
  22. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis—A Signal Processing Approach (Wiley, New York, 1999).
  23. M. Jablonski, Y. Takushima, and K. Kikuchi, “The realization of all-pass filters for third-order dispersion compensation in ultrafast optical fiber transmission systems,” J. Lightwave Technol. 19, 1194–1205 (2001).
  24. P. Baumeister, “Design of multilayer filters by successive approximations,” J. Opt. Soc. Am. 48, 955–958 (1958).
  25. J. A. Dobrowolski, “Completely automatic synthesis of optical thin film systems,” Appl. Opt. 4, 937–946 (1965).
  26. H. A. MacLeod, Thin-Film Optical Filters (Institute of Physics Publishing, Philadelphia, Pa., 2001).
  27. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).
  28. L. Li and J. A. Dobrowolski, “Computation speeds of different optical thin-film synthesis methods,” Appl. Opt. 31, 3790–3799 (1992), and references therein.
  29. J. A. Dobrowolski and R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990), and references therein.
  30. A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67, 438–448 (1977).
  31. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  33. F. Oullette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
  34. B. J. Eggleton, G. Lenz, N. Litchinitser, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1403–1405 (1997).
  35. M. Sumetsky, B. J. Eggleton, and C. M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002).
  36. G. Matthaei, E. M. T. Jones, and L. Young, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (Artech House, Norwood, Mass., 1980).
  37. J. Hunter, Theory and Design of Microwave Filters (Institution of Electrical Engineers, London, 2001).
  38. J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications (Wiley-Interscience, New York, 2001).
  39. E. M. Dowling and D. L. MacFarlane, “Lightwave lattice filters for optically multiplexed communication systems,” J. Lightwave Technol. 12, 471–486 (1994).
  40. M. Lang and T. I. Laakso, “Simple and robust method for the design of allpass filters using least-squares phase error criterion,” IEEE Trans. Circuits Syst. II 41, 40–48 (1994).
  41. K. Rajamani and Y.-S. Lai, “A novel method for designing allpass digital filters,” IEEE Signal Process Lett. 6, 207–209 (1999).
  42. A. H. Gray, Jr. and J. D. Markel, “Digital lattice and ladder filter synthesis,” IEEE Trans. Audio Electroacoust. AU-21, 491–500 (1973).
  43. V. Narayan, E. M. Dowling, and D. L. MacFarlane, “Design of multimirror structures for high-frequency bursts and codes of ultrashort pulses,” IEEE J. Quantum Electron. 30, 1671–1680 (1994).
  44. J. A. Dobrowolski, F. C. Ho, A. Belkind, and V. A. Koss, “Merit functions for more effective thin film calculations,” Appl. Opt. 28, 2824–2831 (1989).
  45. E. K. P. Chong and S. H. Zak, An Introduction to Optimization (Wiley, New York, 1996).
  46. T. E. Shoup and F. Mistree, Optimization Methods with Applications for Personal Computers (Prentice-Hall, Englewood Cliffs, N.J., 1987).
  47. M. Gerken and D. A. B. Miller, “Thin-Film (DE)MUX based on group-velocity effects,” in Proceedings of the Twenty-Eighth European Conference on Optical Communication ECOC 2002, P. Danielsen, ed. (ECOC, Copenhagen, Denmark, 2002), paper 11.3.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited