OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 7 — Mar. 1, 2003
  • pp: 1360–1366

Computational design of solar reflection and far-infrared transmission films for a variable emittance device

Kazunori Shimazaki, Akira Ohnishi, and Yuji Nagasaka  »View Author Affiliations


Applied Optics, Vol. 42, Issue 7, pp. 1360-1366 (2003)
http://dx.doi.org/10.1364/AO.42.001360


View Full Text Article

Enhanced HTML    Acrobat PDF (143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A smart radiation device (SRD) that is a variable emittance radiator has been studied as a method of thermal control for spacecraft. The SRD consists of manganese oxide with a perovskite-type structure, and the total hemispherical emittance of the SRD changes considerably depending on temperature. Here we propose an optimal method of designing multilayer films for the SRD by using a genetic algorithm. The multilayer films reflect solar radiation and transmit far-infrared radiation to maintain variation of the infrared optical properties of the SRD.

© 2003 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(310.0310) Thin films : Thin films

History
Original Manuscript: August 27, 2002
Revised Manuscript: November 21, 2002
Published: March 1, 2003

Citation
Kazunori Shimazaki, Akira Ohnishi, and Yuji Nagasaka, "Computational design of solar reflection and far-infrared transmission films for a variable emittance device," Appl. Opt. 42, 1360-1366 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-7-1360


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Tachikawa, A. Ohnishi, K. Shimazaki, A. Okamoto, Y. Nakamura, Y. Shimakawa, M. Kosaka, T. Mori, A. Ochi, “Design and ground test results of a variable emittance radiator,” SAE Technical Paper 00ICES-314 (Society of Automotive Engineers, Warrendale, Pa., 2000).
  2. K. Shimazaki, S. Tachikawa, A. Ohnishi, Y. Nagasaka, “Temperature dependence of total hemispherical emittance in perovskite-type manganese oxide, La1–xSr1–xMnO3,” High Temp.—High Pressures 33, 525–531 (2001). [CrossRef]
  3. L. Li, J. A. Dobrowolski, “Computation speeds of different optical thin-film synthesis methods,” Appl. Opt. 31, 3790–3799 (1992). [CrossRef] [PubMed]
  4. J. A. Dobrowolski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990). [CrossRef] [PubMed]
  5. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Mass., 1989).
  6. Y. Okimoto, T. Katsufiji, T. Ishikawa, T. Arima, Y. Tokura, “Variation of electronic structure in La1–xSrxMnO3 (0≤×≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55, 4206–4214 (1995). [CrossRef]
  7. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, “Insulator-metal transition and giant magnetoresistance in La1–xSrxMnO3,” Phys. Rev. B 51, 14103–14109 (1995). [CrossRef]
  8. C. Zener, “Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure,” Phys. Rev. 82, 403–405 (1951). [CrossRef]
  9. P.-G. de Gennes, “Effects of double exchange in magnetic crystals,” Phys. Rev. 118, 141–154 (1960). [CrossRef]
  10. G. H. Jonker, J. H. van Santen, “Ferromagnetic compounds of manganese with perovskite structure,” Physica (The Hague) 16, 337–349 (1950). [CrossRef]
  11. A. Ohnishi, T. Hayashi, “Measurement of incidence angle dependence of solar absorptance,” in Proceedings of the International Symposium on Environmental and Thermal Systems for Space Vehicles, ESA SP-200, T. D. Guyenne, J. J. Hunt, eds. (ESA Scientific Technical Publications Branch, Noordwijk, The Netherlands, 1983, pp. 467–470.
  12. T. Arima, Y. Tokura, “Optical study of electric structure in perovskite-type RMO3 (R = La, Y; M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu),” J. Phys. Soc. Jpn. 64, 2488–2501 (1995). [CrossRef]
  13. R. Horikoshi, Y. Nagasaka, A. Ohnishi, “A method for calculating thermal radiation properties of multilayer films from optical constants,” Int. J. Thermophys. 19, 547–555 (1998). [CrossRef]
  14. O. S. Heavens, “Thin film optics,” in Optical Properties of Thin Solid Films (Dover, New York, 1991), pp. 46–95.
  15. M. P. Thekaekara, “The solar constant and the solar spectrum measured from a research aircraft, (NASA Tech.Rep. R-351 (NASA, Greenbelt, Md., 1970), pp. 71–80.
  16. D. M. Roessler, “Kramers-Kronig analysis of reflection data,” Br. J. Appl. Phys. 16, 1119–1123 (1965). [CrossRef]
  17. K. Shimazaki, S. Tachikawa, A. Ohnishi, Y. Nagasaka, “Radiative and optical properties of La1–xSrxMnO3 (0≤ x ≤ 0.4) in the vicinity of metal-insulator transition temperatures from 173 to 413 K,” Int. J. Thermophys. 22, 1549–1561 (2001). [CrossRef]
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids I–III (Academic, New York, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited