OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 7 — Mar. 1, 2003
  • pp: 1384–1394

Influence of cell shape and aggregate formation on the optical properties of flowing whole blood

Annika M. K. Enejder, Johannes Swartling, Prakasa Aruna, and Stefan Andersson-Engels  »View Author Affiliations


Applied Optics, Vol. 42, Issue 7, pp. 1384-1394 (2003)
http://dx.doi.org/10.1364/AO.42.001384


View Full Text Article

Enhanced HTML    Acrobat PDF (913 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We studied the influence of shape and secondary, or intercellular, organization on the absorption and scattering properties of red blood cells to determine whether these properties are of any practical significance for optical evaluation of whole blood and its constituents. A series of measurements of transmittance and reflectance of light from bovine blood in a flow cuvette was conducted with a 650–900-nm integrating sphere at shear rates of 0–1600 s-1, from which the influence of cell orientation, elongation, and aggregate formation on the absorption (μ a ) and the reduced scattering (μ s ′) coefficients could be quantified. Aggregation was accompanied by a decrease of 4% in μ s ′ compared with the value in randomly oriented single cells. Increasing the degree of cell alignment and elongation as a result of increasing shear rate reduced μ s ′ by 6% and μ a by 3%, evaluated at a shear rate of 1600 s-1. Comparison with T-matrix computations for oblate- and prolate-shaped cells with corresponding elongation and orientation indicates that the optical properties of whole blood are determined by those of its individual cells, though influenced by a collective scattering factor that depends on the cell-to-cell organization. We demonstrate that cell morphological changes must be taken into consideration when one is conducting whole blood spectroscopy.

© 2003 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.1530) Medical optics and biotechnology : Cell analysis
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.0290) Scattering : Scattering

History
Original Manuscript: August 1, 2002
Revised Manuscript: November 20, 2002
Published: March 1, 2003

Citation
Annika M. K. Enejder, Johannes Swartling, Prakasa Aruna, and Stefan Andersson-Engels, "Influence of cell shape and aggregate formation on the optical properties of flowing whole blood," Appl. Opt. 42, 1384-1394 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-7-1384

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited