OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 8 — Mar. 10, 2003
  • pp: 1463–1476

Design of three-dimensional superresolution filters and limits of axial optical superresolution

Haitao Liu, Yingbai Yan, Deer Yi, and Guofan Jin  »View Author Affiliations


Applied Optics, Vol. 42, Issue 8, pp. 1463-1476 (2003)
http://dx.doi.org/10.1364/AO.42.001463


View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theories to design a three-dimensional superresolution filter (TDSF) for confocal microscopy are proposed that can obtain a globally optimal solution through linear programming. The designed TDSF is proved to be a phase-only element introducing a phase delay of 0 or π. Five design examples of the TDSF are presented to demonstrate the validity of these theories. Regardless of transverse superresolution, a curve of S eu (G a ±) defined as the maximum value of Strehl ratio S under the axial resolving power of G a ± is calculated to set the fundamental limits of axial optical superresolution. Finally, what is to our knowledge a novel analytic expression of S eu (G a ±) is deduced.

© 2003 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(120.2440) Instrumentation, measurement, and metrology : Filters

History
Original Manuscript: July 17, 2002
Revised Manuscript: November 13, 2002
Published: March 10, 2003

Citation
Haitao Liu, Yingbai Yan, Deer Yi, and Guofan Jin, "Design of three-dimensional superresolution filters and limits of axial optical superresolution," Appl. Opt. 42, 1463-1476 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-8-1463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Carlsson, P. E. Danielsson, R. Lenz, A. Liljeborg, L. Majlof, N. Aslund, “Three-dimensional microscopy using a confocal laser scanning microscope,” Opt. Lett. 10, 53–55 (1985). [CrossRef] [PubMed]
  2. T. Wilson, B. R. Masters, “Confocal microscopy,” Appl. Opt. 33, 565–566 (1994). [CrossRef] [PubMed]
  3. C. J. R. Sheppard, Min. Gu, “Improvement of axial resolution in confocal microscopy using an annular pupil,” Optics Commun. 84, 7–13 (1991). [CrossRef]
  4. M. Martinez-Corral, P. Andres, J. Ojeda-Castaneda, G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995). [CrossRef]
  5. C. J. R. Sheppard, “Leaky annular pupils for improved axial imaging,” Optik (Stuttgart) 99, 32–34 (1995).
  6. T. R. M. Sales, G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227–230 (1998). [CrossRef]
  7. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, J. Swoger, “Tailoring the axial shape of the point spread function using the Toraldo concept,” Opt. Express 10, 98–103 (2002). [CrossRef] [PubMed]
  8. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999). [CrossRef]
  9. X. Deng, G. Wang, Z. Xu, “3-D superresolution pupil filter,” Chin. J. Lasers A28, 459–462 (2001).
  10. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik (Stuttgart) 107, 145–148 (1998).
  11. C. J. R. Sheppard, G. Calvert, M. Wheatland, “Focal distribution for superresolving Toraldo filters,” J. Opt. Soc. Am. A 15, 849–856 (1998). [CrossRef]
  12. G. Toraldo di Francia, “Nuovo pupille superresolventi,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).
  13. M. Martínez-Corral, L. Muñoz-Escrivá, M. Kowalczyk, T. Cichocki, “One-dimensional iterative algorithm for three-dimensional point-spread function engineering,” Opt. Lett. 26, 1861–1863 (2001). [CrossRef]
  14. J. K. Strayer, Linear Programming and Its Applications (Springer-Verlag, New York, 1989), Chap. 2. [CrossRef]
  15. T. R. M. Sales, G. M. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22, 582–584 (1997). [CrossRef] [PubMed]
  16. H. Liu, Y. Yan, Q. Tan, G. Jin, “Theories for the design of diffractive superresolution elements and limits of optical superresolution,” J. Opt. Soc. Am. A 19, 2185–2193 (2002). [CrossRef]
  17. H. Liu, Y. Yan, D. Yi, G. Jin, “Theories for design of hybrid refractive-diffractive superresolution lens with high numerical aperture,” J. Opt. Soc. Am. A.
  18. T. S. Blyth, E. F. Robertson, Further Linear Algebra (Springer, London; New York, 2002), Chap. 1. [CrossRef]
  19. L. E. Elsgolc, Calculus of Variations (Pergamon, Oxford, UK, 1961), Chap. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited