OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 8 — Mar. 10, 2003
  • pp: 1493–1502

Code-multiplexed optical scanner

Nabeel A. Riza and Muzammil A. Arain  »View Author Affiliations

Applied Optics, Vol. 42, Issue 8, pp. 1493-1502 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A three-dimensional (3-D) optical-scanning technique is proposed based on spatial optical phase code activation on an input beam. This code-multiplexed optical scanner (C-MOS) relies on holographically stored 3-D beam-forming information. Proof-of-concept C-MOS experimental results by use of a photorefractive crystal as a holographic medium generates eight beams representing a basic 3-D voxel element generated via a binary-code matrix of the Hadamard type. The experiment demonstrates the C-MOS features of no moving parts, beam-forming flexibility, and large centimeter-size apertures. A novel application of the C-MOS as an optical security lock is highlighted.

© 2003 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(120.5800) Instrumentation, measurement, and metrology : Scanners

Original Manuscript: June 18, 2002
Revised Manuscript: October 15, 2002
Published: March 10, 2003

Nabeel A. Riza and Muzammil A. Arain, "Code-multiplexed optical scanner," Appl. Opt. 42, 1493-1502 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Gottlieb, C. L. M. Ireland, J. M. Ley, “Electro-Optic and Acousto-Optic Scanning and Deflection,” (Marcel Dekker, New York, 1983).
  2. V. J. Fowler, J. Schlafer, “A survey of laser beam deflection techniques,” in Proceedings of IEEE Conference, 54.
  3. Q. W. Song, X. Wang, R. Bussjager, J. Osman, “Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer,” Appl. Opt. 35, 3155–3162 (1996). [CrossRef] [PubMed]
  4. N. Asada, “Silicon micromachined two dimensional galvano optical scanner,” IEEE Trans. Magn. 306, 4647–4648 (1994). [CrossRef]
  5. N. A. Riza, “MOST: multiplexed optical scanner technology,” in Proceedings of IEEE Annual Meeting of Lasers and Electro-Optic Society, (Institute of Electrical and Electronics Engineers, 2000), 2, pp. 828–829.
  6. N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in Proceedings of IEEE 12th Annual Meeting of Lasers and Electro-Optic Society, (Institute of Electrical and Electronics Engineers, 1999), pp. 184–185.
  7. N. A. Riza, Z. Yaqoob, “Ultra high speed scanner for optical data handling,” in Proceedings of IEEE 13th Annual Meeting of Lasers and Electro-Optic Society, (Institute of Electrical and Electronics Engineers, Puerto Rico, 2000), pp. 822–823.
  8. N. A. Riza, Z. Yaqoob, “Agile optical beam scanners using wavelength and space manipulations,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 262–271 (2001). [CrossRef]
  9. Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002). [CrossRef] [PubMed]
  10. Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength multiplexed optical scanner,” App. Opt. 40, 6425–6438 (2001). [CrossRef]
  11. Z. Yaqoob, J. Steedle, N. A. Riza, “Wide angle high speed large aperture optical scanner,” in Proceedings of IEEE 14th Annual Meeting of Lasers and Electro-Optic Society, (Institute of Electrical and Electronics Engineers, San Diego, California, 2001), 2, pp. 616–617.
  12. N. A. Riza, “BOPSCAN Technology: A methodology and implementation of the billion point optical scanner,” in International Optical Design Conference 1998, L. R. Gardner, K. P. Thompson, eds., Proc. SPIE3482, 572–578 (1998). [CrossRef]
  13. N. A. Riza, “Digital control polarization-based optical scanner,” U.S. Patent6,031,658, Feb.29, 2000.
  14. N. A. Riza, S. A. Khan, “P-MOS: polarization multiplexed optical scanner,” OSA Annual Meeting, Orlando, USA, 2002.
  15. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).
  16. P. K. Rastogi, Holographic Interferometry (Springer Series in Optical Sciences, Vol. 68, Springer, New York, 1994). [CrossRef]
  17. P. Günter, Electro-optic and Photorefractive Materials (Springer Proceedings in Physics, Vol. 18, Springer-Verlag, New York1987). [CrossRef]
  18. S. A. Benton, “Photographic Holography,” in Optics in Entertainment, C. S. Outwater, ed., Proc. SPIE391, pp. 2–9. (1983). [CrossRef]
  19. J. J. Amodei, D. R. Bosomworth, “Hologram storage and retrieval in photochromic strontium titanate crystals,” Appl. Opt. 8, 2473–2477 (1969). [CrossRef] [PubMed]
  20. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high resolution holograms in LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991). [CrossRef] [PubMed]
  21. X. Yang, Z. Gu, “Three dimensional optical data storage and retrieval system based on phase-code and space multiplexing,” Opt. Eng. 35, 452–456 (1996). [CrossRef]
  22. H. Kogelink, “Coupled wave theory for thick hologram gratings,” J. Bell Syst. Tech. 48, 2909–2947 (1969). [CrossRef]
  23. R. K. Yarlagadda, J. E. Hershey, Hadamard Matrix Analysis and Synthesis With Applications to Communications and Signal/Image Processings (Kluwer Academic, Boston, Mass., 1997).
  24. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Recall of linear combinations of stored data pages based on phase-code multiplexing in volume holography,” Opt. Lett. 19, 1079–1081 (1994). [CrossRef] [PubMed]
  25. C. Denz, G. Roosen, G. Pauliat, T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase encoding technique,” App. Opt. 31, 5700–5706 (1992). [CrossRef]
  26. Z. Wen, Y. Tao, “Orthogonal codes and cross-talk in phase-code multiplexed volume holographic data storage,” Optics Commun. 148, 11–17 (1998). [CrossRef]
  27. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999). [CrossRef]
  28. O. M. Efimov, L. B. Glebov, V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett. 25, 1693–1695 (2000). [CrossRef]
  29. N. A. Riza, “Reconfigurable optical wireless,” in Proceedings of IEEE 12th Annual Meeting of Lasers and Electro-Optic Society, (Institute of Electrical and Electronics Engineers, San Francisco, 1999), 1, pp. 70–71.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited