OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 8 — Mar. 10, 2003
  • pp: 1515–1519

Biased Micromechanical Cantilever Arrays as Optical Image Memory

Daniela Dragoman and Mircea Dragoman  »View Author Affiliations


Applied Optics, Vol. 42, Issue 8, pp. 1515-1519 (2003)
http://dx.doi.org/10.1364/AO.42.001515


View Full Text Article

Acrobat PDF (77 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that an array of optically actuated biased cantilevers can work as an optical data storage, able to encode data stored as arrays of optical pixels (images). Each of these optical pixels can, in addition, have a predetermined pixel depth, expressed as a certain number of gray levels. This new optical memory is able to work at a data rate of approximately 7 GB/s for an image with 128 × 128 pixels.

© 2003 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4680) Optical data storage : Optical memories
(230.0230) Optical devices : Optical devices
(230.0250) Optical devices : Optoelectronics
(230.3990) Optical devices : Micro-optical devices

Citation
Daniela Dragoman and Mircea Dragoman, "Biased Micromechanical Cantilever Arrays as Optical Image Memory," Appl. Opt. 42, 1515-1519 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-8-1515


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Mansuripur and G. G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
  2. D. Dragoman and M. Dragoman, “Micro/Nano-Optoelectromechanical systems,” Prog. Quantum Electron. 25, 229–229 (2001).
  3. L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, and S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
  4. M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
  5. T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, and D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
  6. D. Dragoman and M. Dragoman, “Optical actuation of micromechanical tunneling structures with applications in spectrum analysis and optical computing,” Appl. Opt. 38, 6773–6778 (1999).
  7. D. Dragoman and M. Dragoman, “Single device for laser source measurements from the ultraviolet to the far infrared,” Appl. Opt. 39, 4361–4365 (2000).
  8. D. Dragoman and M. Dragoman, “Characterization of wave fronts of light beams by use of tunneling cantilevers,” Appl. Opt. 40, 678–682 (2001).
  9. T. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
  10. K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Devices 25, 1241–1250 (1978).
  11. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
  12. H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, and H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
  13. O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, and J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).
  14. M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith, in MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, Wash., 2000) pp. 169–208.
  15. D. Dragoman and M. Dragoman, “Time-frequency modeling of atomic force microscopy,” Opt. Commun. 140, 220–225 (1997).
  16. S. Akamine, H. Kuwano, and H. Yamada, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited