OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 9 — Mar. 20, 2003
  • pp: 1551–1563

Maximum-likelihood curve-fitting scheme for experiments with pulsed lasers subject to intensity fluctuations

Thomas Metz, Joachim Walewski, and Clemens F. Kaminski  »View Author Affiliations


Applied Optics, Vol. 42, Issue 9, pp. 1551-1563 (2003)
http://dx.doi.org/10.1364/AO.42.001551


View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Evaluation schemes, e.g., least-squares fitting, are not generally applicable to any types of experiments. If the evaluation schemes were not derived from a measurement model that properly described the experiment to be evaluated, poorer precision or accuracy than attainable from the measured data could result. We outline ways in which statistical data evaluation schemes should be derived for all types of experiment, and we demonstrate them for laser-spectroscopic experiments, in which pulse-to-pulse fluctuations of the laser power cause correlated variations of laser intensity and generated signal intensity. The method of maximum likelihood is demonstrated in the derivation of an appropriate fitting scheme for this type of experiment. Statistical data evaluation contains the following steps. First, one has to provide a measurement model that considers statistical variation of all enclosed variables. Second, an evaluation scheme applicable to this particular model has to be derived or provided. Third, the scheme has to be characterized in terms of accuracy and precision. A criterion for accepting an evaluation scheme is that it have accuracy and precision as close as possible to the theoretical limit. The fitting scheme derived for experiments with pulsed lasers is compared to well-established schemes in terms of fitting power and rational functions. The precision is found to be as much as three times better than for simple least-squares fitting. Our scheme also suppresses the bias on the estimated model parameters that other methods may exhibit if they are applied in an uncritical fashion. We focus on experiments in nonlinear spectroscopy, but the fitting scheme derived is applicable in many scientific disciplines.

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(000.5490) General : Probability theory, stochastic processes, and statistics
(120.3940) Instrumentation, measurement, and metrology : Metrology
(300.6360) Spectroscopy : Spectroscopy, laser

History
Original Manuscript: December 10, 2001
Revised Manuscript: November 3, 2002
Published: March 20, 2003

Citation
Thomas Metz, Joachim Walewski, and Clemens F. Kaminski, "Maximum-likelihood curve-fitting scheme for experiments with pulsed lasers subject to intensity fluctuations," Appl. Opt. 42, 1551-1563 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-9-1551

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited