OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 9 — Mar. 20, 2003
  • pp: 1588–1593

Light tunneling in clouds

H. Moyses Nussenzveig  »View Author Affiliations

Applied Optics, Vol. 42, Issue 9, pp. 1588-1593 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Solar radiation, traveling outside cloud water droplets, excites sharp resonances and surface waves by tunneling into the droplets. This effect contributes substantially to the total absorption (typically, of the order of 20%) and yields the major contribution to backscattering, producing the meteorological glory. Usual computational practices in atmospheric science misrepresent resonance contributions and cannot be relied on in the assessment of possible anomalies in cloud absorption.

© 2003 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.4020) Scattering : Mie theory

Original Manuscript: June 20, 2002
Revised Manuscript: October 28, 2002
Published: March 20, 2003

H. Moyses Nussenzveig, "Light tunneling in clouds," Appl. Opt. 42, 1588-1593 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Newton, Opticks, 4th ed. (Royal Society, London, 1730), Book III, Part I, Query 29.
  2. W. J. Wiscombe, “An absorbing mystery,” Nature (London) 376, 466–467 (1995), and references therein.
  3. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, C. A. Johnson, eds., Climate Change 2001: The Scientific Basis (Cambridge U. Press, Cambridge, UK, 2001), p. 433.
  4. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, Cambridge, UK, 1992). [CrossRef]
  5. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  6. J. B. Keller, “Geometrical theory of diffraction,” in Calculus of Variations and its Applications, L. M. Graves, ed. (McGraw-Hill, New York, 1958), pp. 27–52. [CrossRef]
  7. R. K. Chang, A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  8. L. G. Guimarães, H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41, 625–647 (1994). [CrossRef]
  9. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995–2003 (1987). [CrossRef]
  10. C. A. A. de Carvalho, H. M. Nussenzveig, “Time delay,” Phys. Rep. 364, 83–174 (2002). [CrossRef]
  11. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  12. J. V. Dave, “Effect of the coarseness of the integration increment on the calculation of the radiation scattered by polydispersed aerosols,” Appl. Opt. 8, 1161–1167 (1969). [CrossRef] [PubMed]
  13. A. Slingo, H. M. Schrecker, “On the shortwave radiative properties of stratiform water clouds,” Q. J. R. Meteorol. Soc. 108, 407–426 (1982). [CrossRef]
  14. D. L. Mitchell, “Parameterization of the Mie extinction and absorption coefficients for water clouds,” J. Atmos. Sci. 57, 1311–1326 (2000). [CrossRef]
  15. P. Chylek, P. Damiano, N. Kalyaniwalla, E. P. Shettle, “Radiative properties of water clouds,” Atmos. Res. 35, 139–156 (1995). [CrossRef]
  16. R. Davies, W. L. Ridgway, K.-E. Kim, “Spectral absorption of solar radiation in cloudy atmospheres: a 20 cm-1 model,” J. Atmos. Sci. 41, 2126–2137 (1984). [CrossRef]
  17. D. M. Wieliczka, S. Weng, M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989). [CrossRef] [PubMed]
  18. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (Department of Physics, University of Missouri-Kansas City, Kansas City, Mo., 1981).
  19. J. C. Brandt, “An unusual observation of the glory,” Publ. Astron. Soc. Pac. 80, 25–28 (1968). [CrossRef]
  20. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  21. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  22. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983). [CrossRef]
  23. V. Khare, H. M. Nussenzveig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977). [CrossRef]
  24. D. Ngo, R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994). [CrossRef]
  25. V. A. Markel, “The effects of averaging on the enhancement factor for absorption of light by carbon particles in microdroplets of water,” J. Quant. Spectrosc. Radiat. Transfer 72, 765–774 (2002). [CrossRef]
  26. V. A. Markel, V. M. Shalaev, “Absorption of light by soot particles in micro-droplets of water,” J. Quant. Spectrosc. Radiat. Transfer 63, 321–339 (1999). [CrossRef]
  27. A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980). [CrossRef] [PubMed]
  28. J. P. Barton, “Effects of surface perturbations on the quality and focused-beam excitation of microsphere resonance,” J. Opt. Soc. Am. A 16, 1974–1980 (1999). [CrossRef]
  29. J. Wong, “Surface resonances in high-frequency scattering from a nearly-sharp three-dimensional well,” M.S. thesis (Department of Physics and Astronomy, University of New Mexico, Albuquerque, N.M., 1968).
  30. H. M. Lai, C. C. Lam, P. T. Leung, K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991). [CrossRef]
  31. H. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1980), Fig. 10–15.
  32. S. Asano, “Light scattering properties of spheroidal particles,” Appl. Opt. 18, 712–723 (1979). [CrossRef] [PubMed]
  33. A. J. Baran, P. N. Francis, S. Havemann, P. Yang, “A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientation, using exact T-matrix theory and aircraft observations of cirrus,” J. Quant. Spectrosc. Radiat. Transfer 70, 505–518 (2001). [CrossRef]
  34. L. D. Landau, E. M. Lifshitz, Quantum Mechanics, 3rd ed. (Butterworth-Heinemann, New York, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited