OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 9 — Mar. 20, 2003
  • pp: 1692–1698

Wavelength-Tunable Semiconductor Pump Diode for Reconfigurable Raman Amplification

Paul Steinvurzel, Benjamin J. Eggleton, Jake Bromage, Jean-Christophe Bouteiller, Consuelo Corrales, Henry Huang, and Shu Namiki  »View Author Affiliations

Applied Optics, Vol. 42, Issue 9, pp. 1692-1698 (2003)

View Full Text Article

Acrobat PDF (2084 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a wavelength-tunable semiconductor pump diode for Raman amplification. The diode is stabilized by a fiber Bragg grating (FBG) that can be continuously tuned over more than 20 nm. Tuning of the diode output wavelength is achieved by varying the center wavelength of the FBG, since the diode preferentially lases within the FBG bandwidth. We investigate the effects of wavelength tuning on the diode spectrum on its corresponding Raman gain, and on pump-pump four-wave mixing in fiber having zero-dispersion wavelength coincident with the Raman pumps.

© 2003 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect
(230.1480) Optical devices : Bragg reflectors

Paul Steinvurzel, Benjamin J. Eggleton, Jake Bromage, Jean-Christophe Bouteiller, Consuelo Corrales, Henry Huang, and Shu Namiki, "Wavelength-Tunable Semiconductor Pump Diode for Reconfigurable Raman Amplification," Appl. Opt. 42, 1692-1698 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Namiki and Y. Emori, “Ultrabroad band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7, 3–16 (2001).
  2. R. E. Neuhauser, P. M. Krummrich, H. Bock, and C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” in Optical Fiber Communications, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), MA4.
  3. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), Sec. 5.7.
  4. C. R. Giles, T. Erdogan, and V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon Technol. Lett. 6, 907–909 (1994).
  5. Y. Zhao and C. Shu, “Single-mode operation characteristics of a self-injection seeded Fabry-Perot laser diode with distributed feedback from a fiber grating,” IEEE Photon Technol. Lett. 9, 1436–1438 (1997).
  6. A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, and D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
  7. A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
  8. J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAs and 1.3 mm InGaAsP diode lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983).
  9. A. F. Phillips, S. J. Sweeney, A. R. Adams, and P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
  10. G. P. Agrawal, Non-Linear Fiber Optics (Academic, San Diego, 1995), Chap. 10.
  11. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
  12. J. Bromage, P. J. Winzer, L. E. Nelson, and C. J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers,” in Optical Amplifiers and Their Applications, Vol. 77 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), OWA5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited