OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 9 — Mar. 20, 2003
  • pp: 1699–1709

Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization

Ferdinando De Tomasi, Armando Blanco, and Maria R. Perrone  »View Author Affiliations

Applied Optics, Vol. 42, Issue 9, pp. 1699-1709 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Results on the monitoring of strong African dust outbreaks at Lecce in the southeastern corner of Italy (40°20′ N, 18°6′ E) during May 2001 are presented. This activity has been performed in the framework of the European Aerosol Research Lidar Network (EARLINET). The lidar station of Lecce is located on a flat rural area that is approximately 800 km from the northern Africa coast. So it is closer to Africa than most of all other EARLINET stations and allow monitoring African dust transport early in its life cycle, at all levels in the plume. An elastic-backscatter Raman lidar based on a XeF excimer laser (351 nm) has been used to monitor the time evolution and vertical structure of the dust layers and get independent measurements of the aerosol extinction and backscatter coefficients. The findings are presented in terms of vertical profiles of the extinction and backscatter coefficients and of the lidar ratio. A quite deep dust layer extending between 2 and 6 km and characterized by a backscatter coefficient of ∼0.0016 (km sr)-1, a lidar ratio of approximately 50 sr, and an aerosol optical depth of 0.26 was observed on 17 May 2001 between 18:55 and 20:07 UT. The layer persisted for approximately five days. Dust layers of lower optical thickness and shorter persistence time have generally been monitored at the lidar site during African dust outbreaks. Results on the chemical and morphological characterization of the dust collected at the lidar station are also given to further support the origin of the monitored aerosol layers.

© 2003 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar

Original Manuscript: March 28, 2002
Revised Manuscript: September 23, 2003
Published: March 20, 2003

Ferdinando De Tomasi, Armando Blanco, and Maria R. Perrone, "Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization," Appl. Opt. 42, 1699-1709 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999). [CrossRef]
  2. G. P. Gobbi, F. Barnaba, R. Giorgi, A. Santacasa, “Altitude-resolved properties of a Sahara dust event over the Mediterranean,” Atmos. Environ. 34, 5119–5127 (2000). [CrossRef]
  3. I. Sokolik, O. B. Toon, “Direct radiative forcing by anthropogenic airborne mineral aerosols,” Nature 381, 681–683 (1996). [CrossRef]
  4. I. Tegen, I. Fung, “Contribution to the atmospheric mineral aerosol load from land surface modification,” J. Geophys. Res. 100, 18707–18726 (1995). [CrossRef]
  5. F. Prodi, G. Fea, “A case of transport and deposition of Sahara dust over the Italian peninsula and southern Europe,” J. Geophys. Res. 84, 6951–6960 (1979). [CrossRef]
  6. I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Sahara dust,” Geophys. Res. Lett. 29, 20-1–20-4 (2002). [CrossRef]
  7. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  8. S. B. Hooker, W. Esaias, G. Feldman, W. Gregg, C. R. McClain, “An overview of the SeaWiFS and ocean color,” SeaWiFS Technical Report Series, NASA Tech. Memo.1, 104566 (NASA Goddard Space Center, Greenbelt, Md., 1992).
  9. J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Bockmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Laser Remote Sensing of the Atmosphere. Selected Papers of the Twentieth International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Edition Ecole Polytechnique, Palaiseau, France, 2000), pp. 155–158.
  10. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  11. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998). [CrossRef]
  12. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurements of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  13. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  14. V. Matthias, C. Böckmann, V. Freudenthaler, G. Pappalardo, J. Bösenberg, V. Amiridis, A. Amodeo, A. Ansmann, D. Balis, A. Boselli, A. Chaykovski, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmannm, M. Frioud, A. Hågård, M. Iarlori, L. Komguem, S. Kreipl, G. Larchêveque, H. Linné, R. Matthey, I. Mattis, A. Papayannis, J. Pelon, M. R. Perrone, R. Persson, D. P. Resendes, V. Rizi, F. Rocadenbosch, J. A. Rodriguez, L. J. Sauvage, J. Schneider, R. Schumaker, V. Shcherbakov, V. Simeonov, U. Wandinger, X. Wang, M. Wiegner, C. Zerefos, “Lidar intercomparison on algorithm and system level in the frame of EARLINET,” Report 337 (Max-Planck-Institute für Meteorologie, Hamburg, Germany, 2002).
  15. V. Freudenthaler, V. Matthias, A. Amodeo, D. Balis, B. Calpini, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, L. Mattis, V. Rizi, J. Rodriguez, X. Wang, M. Wiegner, J. Bösenberg, “Intercomparison of 21 aerosol lidar systems in the frame of EARLINET,” in Lidar Remote Sensing in Atmosphere and Earth Sciences,” proceedings of the XXI International Laser Radar Conference, Quebec, Canada, 8–12 July 2002, L. R. Bissonette, G. Roy, G. Valle, ed. (Defence RD Canada-Valcartier, Val-Belair, Quebec, Canada, 2002).
  16. C. Kottmeier, B. Fay, “Trajectories in the Antarctic lower troposphere,” J. Geophys. Res. 105, 10947–10959 (1998). [CrossRef]
  17. A. Stohl, “Computation, accuracy and application of trajectories—a review and bibliography,” Atmos. Environ. 32, 947–966 (1998). [CrossRef]
  18. J. Bösenberg, “EARLINET: a European aerosol research lidar network to establish an aerosol climatology,” contract EVR1-CT1999-40003. Scientific report for Feb. 2001–Jan. 2002 (2002) for the European Commission.
  19. P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979). [PubMed]
  20. A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “Pollution outbreaks during ACE2, part I: Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001). [CrossRef]
  21. A. Ansmann, D. Althausen, U. Wandinger, K. Franke, D. Muller, F. Wagner, J. Heintzenberg, “Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study,” Geophys. Res. Lett. 27, 963–966 (2000). [CrossRef]
  22. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19673 (1998). [CrossRef]
  23. R. A. Ferrare, D. D. Turner, L. H. Brasseur, W. F. Feltz, O. Dubovik, Tim. Tooman, “Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains,” J. Geophys. Res. 106, 20333–20347 (2001). [CrossRef]
  24. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef] [PubMed]
  25. F. Barnaba, G. P. Gobbi, “Lidar estimation of tropospheric aerosol extinction, surface area and volume: maritime and desert-dust cases,” J. Geophys. Res. 106, 3005–3018 (2001). [CrossRef]
  26. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Oceanic Technol. 15, 1044–1050 (1998). [CrossRef]
  27. Z. Levin, J. D. Lindberg, “Size distribution, chemical composition, and optical properties of urban and desert aerosols in Israel,” J. Geophys. Res. 84, 6941–6950 (1979). [CrossRef]
  28. I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelenth,” J. Geophys. Res. 104, 9423–9444 (1999). [CrossRef]
  29. J. W. Salisbury, L. S. Walter, N. Vergo, D. M. D’ Aria, Infrared (2.1–25 μm) Spectra of Minerals (John Hopkins Un. Press, Baltimore, Md., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited