OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 1 — Jan. 1, 2004
  • pp: 113–121

Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement

Alexandre R. Tumlinson, Lida P. Hariri, Urs Utzinger, and Jennifer K. Barton  »View Author Affiliations


Applied Optics, Vol. 43, Issue 1, pp. 113-121 (2004)
http://dx.doi.org/10.1364/AO.43.000113


View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have designed a multimodality system that combines optical coherence tomography (OCT) and laser-induced fluorescence (LIF) in a 2.0-mm-diameter endoscopic package. OCT provides ∼18-μm resolution cross-sectional structural information over a 6-mm field. LIF spectra are collected sequentially at submillimeter resolution across the same field and provide histochemical information about the tissue. We present the use of a rod prism to reduce the asymmetry in the OCT beam caused by a cylindrical window. The endoscope has been applied to investigate mouse colon cancer in vivo.

© 2004 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

History
Original Manuscript: April 16, 2003
Revised Manuscript: September 2, 2003
Published: January 1, 2004

Citation
Alexandre R. Tumlinson, Lida P. Hariri, Urs Utzinger, and Jennifer K. Barton, "Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement," Appl. Opt. 43, 113-121 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-1-113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Cancer Facts and Figures 2003 (American Cancer Society, Atlanta, Ga., 2003).
  2. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991). [PubMed]
  3. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992). [PubMed]
  4. G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996). [CrossRef] [PubMed]
  5. K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998). [CrossRef] [PubMed]
  6. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000). [CrossRef] [PubMed]
  7. M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000). [CrossRef] [PubMed]
  8. R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001). [CrossRef]
  9. R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002). [CrossRef]
  10. V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003). [CrossRef]
  11. A. R. Tumlinson, L. P. Hariri, J. K. Barton, “Miniature endoscope for a combined OCT-LIF system,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4956, 129–138 (2003). [CrossRef]
  12. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996). [CrossRef] [PubMed]
  13. B. E. Bouma, G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett. 24, 531–533 (1999). [CrossRef]
  14. Y. T. Pan, H. K. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001). [CrossRef]
  15. U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003). [CrossRef] [PubMed]
  16. N. A. Denisov, “Comparison of competing fiber optic probes for tissue fluorescence analysis,” in Optical Biopsy and Tissue Optics, I. J. Bigio, G. J. Mueller, G. J. Puppels, R. W. Steiner, K. Svanberg, eds., Proc. SPIE4161, 234–243 (2000). [CrossRef]
  17. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002). [CrossRef] [PubMed]
  18. T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003). [CrossRef] [PubMed]
  19. L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992). [CrossRef] [PubMed]
  20. P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000). [PubMed]
  21. L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000). [CrossRef]
  22. C. D. Davis, H. Zeng, J. W. Finley, “Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice,” J. Nutr. 132, 307–309 (2002). [PubMed]
  23. H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001). [CrossRef] [PubMed]
  24. E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002). [CrossRef] [PubMed]
  25. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000). [CrossRef] [PubMed]
  26. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited