OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 1 — Jan. 1, 2004
  • pp: 127–131

Attenuation mechanism effect on filter shape in channelized dynamic spectral equalizers

Sang-Hyun Oh and Dan M. Marom  »View Author Affiliations

Applied Optics, Vol. 43, Issue 1, pp. 127-131 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Free-space-based channelized dynamic spectral equalizers are theoretically investigated by solving the temporal-frequency-dependent power-coupling integral for commonly used active device technologies: liquid-crystal modulators, tilting micromirror arrays, and deformable gratings. Channel-filter characteristics, such as bandwidth and interchannel transition, are found to depend on the different attenuation mechanisms provided by the active devices. Such information is required for choosing the proper device parameters in designing channel equalizers and similar free-space spatially dispersed subsystems.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.6120) Optical devices : Spatial light modulators

Sang-Hyun Oh and Dan M. Marom, "Attenuation Mechanism Effect on Filter Shape in Channelized Dynamic Spectral Equalizers," Appl. Opt. 43, 127-131 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. E. Stern and K. Bala, Multiwavelength Optical Networks (Addison-Wesley, Reading, Mass., 1999), Chap. 4.
  2. J. E. Ford and J. A. Walker, “Dynamic spectral power equalization using micro-optomechanics,” IEEE Photon. Technol. Lett. 10, 1440–42 (1998). [CrossRef]
  3. D. T. Neilson, D. S. Greywall, S. Chandrasekhar, L. L. Buhl, H. Tang, L. Ko, N. R. Basavanhally, F. Pardo, D. A. Ramsey, J. D. Weld, Y. L. Low, J. Prybyla, R. Scotti, A. Gasparyan, M. Haueis, S. Arney, S. P. O’Neill, C.-S. Pai, D. H. Malkani, M. M. Meyers, N. Saluzzi, S.-H. Oh, O. D. Lopez, G. R. Bogart, F. P. Klemens, M. Luo, J. Q. Liu, K. Teffeau, A. Ramirez, K. S. Werder, J. E. Griffith, C. Frye, M. V. Kunnavakkam, S. T. Stanton, J. A. Liddle, H. T. Soh, T.-C. Lee, O. Nalamasu, and K. C. Nguyen, “High-dynamic range channelized MEMS equalizing filter,” in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), p. 586. [CrossRef]
  4. J. Kondis, B. A. Scott, A. Ranalli, and R. Lindquist, “Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers,” in 2001 IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 1, pp. 292–293.
  5. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992). [CrossRef] [PubMed]
  6. R. E. Wagner and W. J. Tomlinson, “Coupling efficiency of optics in single-mode fiber components,” Appl. Opt. 21, 2671–2688 (1982). [CrossRef] [PubMed]
  7. J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, “Wavelength add-drop switching using tilting micromirrors,” IEEE J. Lightwave Technol. 17, 904–911 (1999). [CrossRef]
  8. D. M. Marom, D. T. Neilson, D. S. Greywall, N. R. Basavanhally, P. R. Kolodner, Y. L. Low, F. Pardo, C. A. Bolle, S. Chandrasekhar, L. Buhl, C. R. Giles, S.-H. Oh, C. S. Pai, K. Werder, H. T. Soh, G. R. Bogart, E. Ferry, F. P. Klemens, K. Teffeau, J. F. Miner, S. Rogers, J. E. Bower, R. C. Keller, and W. Mansfield, “Wavelength-selective 1 × 4 Switch for 128 WDM channels at 50 GHz spacing,” in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2002), postdeadline paper FB-7. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited