OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 1 — Jan. 1, 2004
  • pp: 167–172

Smart Optical Sensors for Chemical Substances Based on Porous Silicon Technology

Luca De Stefano, Ivo Rendina, Luigi Moretti, Stefania Tundo, and Andrea Mario Rossi  »View Author Affiliations


Applied Optics, Vol. 43, Issue 1, pp. 167-172 (2004)
http://dx.doi.org/10.1364/AO.43.000167


View Full Text Article

Acrobat PDF (612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple geometry optical sensor based on porous silicon technology is theoretically and experimentally studied. We expose some porous silicon optical microcavities with different porous structures to several substances of environmental interest: Very large red shifts in the single transmission peak in the reflectivity spectrum due to changes in the average refractive index are observed. The phenomenon can be ascribed to capillary condensation of vapor phases in the silicon pores. We numerically compute the peak shifts as a function of the liquid volume fraction condensed into the stack by using the Bruggeman theory. The results presented are promising for vapor and liquid detection and identification.

© 2004 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(160.4670) Materials : Optical materials
(230.3990) Optical devices : Micro-optical devices

Citation
Luca De Stefano, Ivo Rendina, Luigi Moretti, Stefania Tundo, and Andrea Mario Rossi, "Smart Optical Sensors for Chemical Substances Based on Porous Silicon Technology," Appl. Opt. 43, 167-172 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-1-167


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. C. Erson, R. S. Miller, and C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 23, 835–839 (1990).
  2. K. Watanabe, T. Okada, I. Choe, and Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
  3. M. Ben-Chorin, A. Kux, and I. Schecter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481–483 (1994).
  4. A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, and A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
  5. H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, and N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
  6. J. Gao, T. Gao, and M. J. Sailor, “A porous silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett. 77, 901–903 (2000).
  7. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
  8. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
  9. P. A. Snow, E. K. Squire, P. St. J. Russel, and L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
  10. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” RVI. Nuovo Cimento 20, 1–76 (1997).
  11. M. A. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 955–957 (1997).
  12. J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
  13. P. Allcock and P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001).
  14. L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Time-resolved sensing of chemical species in porous silicon optical microcavity,” Sens. Actuators B (to be published).
  15. A. V. Neimark and P. I. Ravikovitch, “Capillary condensation in MMS and pore structure characterization,” Microporous Mesoporous Mater. 44–45, 697–707 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited