OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 1 — Jan. 1, 2004
  • pp: 41–48

Polarimetric fiber laser sensor for hydrostatic pressure

Klaus Bohnert, Andreas Frank, Etienne Rochat, Karim Haroud, and Hubert Brändle  »View Author Affiliations

Applied Optics, Vol. 43, Issue 1, pp. 41-48 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarimetric Fabry-Perot fiber laser sensor for fluid pressure up to 100 MPa is investigated. The fluid acts on one of two elliptical-core fiber sections in the laser cavity, producing a shift in the differential phase of the two orthogonal polarization modes and thus a variation in the beat frequencies of the corresponding longitudinal laser modes. The second fiber section, with a 90° offset in the core orientation, compensates for temperature-induced phase shifts. The dispersion in the birefringent fiber Bragg grating reflectors is employed to remove the near degeneracy of the polarization mode beat frequencies of a given order and to improve substantially the resolution of the sensor to a few parts in 106 of the free spectral range. Further investigations address the effect of the fluid on the integrity of the fiber, the influence of various fiber coatings on the sensor response, and the intrinsic stability of erbium-doped and undoped sensing fibers under fluid pressure.

© 2004 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2370) Fiber optics and optical communications : Fiber optics sensors

Original Manuscript: June 19, 2003
Revised Manuscript: October 3, 2003
Published: January 1, 2004

Klaus Bohnert, Andreas Frank, Etienne Rochat, Karim Haroud, and Hubert Brändle, "Polarimetric fiber laser sensor for hydrostatic pressure," Appl. Opt. 43, 41-48 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979). [CrossRef] [PubMed]
  2. W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bowtie fibers,” Appl. Opt. 29, 3484–3488 (1990). [CrossRef] [PubMed]
  3. W. J. Bock, T. R. Wolinski, “Hydrostatic pressure effects on mode propagation in highly birefringent two-mode optical fibers,” Opt. Lett. 15, 1434–1436 (1990). [CrossRef] [PubMed]
  4. J. R. Clowes, S. Syngellakis, M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998). [CrossRef]
  5. A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992). [CrossRef]
  6. Y. J. Rao, D. A. Jackson, “Prototype fiber-optic-based pressure probe with built-in temperature compensation with signal recovery by coherence reading,” Appl. Opt. 32, 7110–7113 (1993). [CrossRef] [PubMed]
  7. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001). [CrossRef]
  8. M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993). [CrossRef]
  9. A. D. Kersey, “Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry,” IEICE Trans. Electron. E83-C(3), 400–404 (2000).
  10. Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003). [CrossRef]
  11. H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, “Polarimetric fiber laser sensors,” Opt. Lett. 18, 317–319 (1993). [CrossRef] [PubMed]
  12. H. K. Kim, S. K. Kim, B. Y. Kim, “Polarization control of polarimetric fiber-laser sensors,” Opt. Lett. 18, 1465–1467 (1993). [CrossRef] [PubMed]
  13. G. A. Ball, G. Meltz, W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18, 1976–1978 (1993). [CrossRef] [PubMed]
  14. J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarisation-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984). [CrossRef]
  15. A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical-core optical wave guides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984). [CrossRef]
  16. W. Urbanczyk, T. Martynkien, W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40, 1911–1920 (2001). [CrossRef]
  17. K. Haroud, K. Bohnert, A. Frank, H. Brändle, “Dispersion effects in a highly birefringent fiber laser sensor with fiber Bragg grating reflectors,” Opt. Lett. 27, 897–899 (2002). [CrossRef]
  18. A. Carballar, M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightwave Technol. 15, 1314–1322 (1997). [CrossRef]
  19. J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998). [CrossRef]
  20. J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited