OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 1 — Jan. 1, 2004
  • pp: 70–78

Technique for determining the angular orientation of molecules bound to the surface of an arbitrary planar optical waveguide

Sergio B. Mendes, John Thomas Bradshaw, and S. Scott Saavedra  »View Author Affiliations

Applied Optics, Vol. 43, Issue 1, pp. 70-78 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique to determine the angular orientation of a molecular assembly bound to the surface of a planar optical waveguide of arbitrary structure is described. The approach is based on measuring the absorption dichroic ratio by using the waveguide evanescent fields with orthogonal polarizations (TE, TM) and the same mode order to probe two molecular assemblies, (i) a reference sample composed of an isotropic orientation distribution of dipoles and (ii) a sample of interest. The isotropic sample is used to characterize the waveguide structure, which then allows the orientation parameters of a molecular assembly under investigation to be determined from a measured dichroic ratio. The method developed here is particularly important for applications in gradient-index and multilayer planar waveguide platforms because in those cases the extension of previously reported approaches would require a full experimental characterization of the guiding structure, which would be problematic and may yield inaccurate results.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6690) Optics at surfaces : Surface waves

Original Manuscript: May 6, 2003
Revised Manuscript: August 7, 2003
Published: January 1, 2004

Sergio B. Mendes, John Thomas Bradshaw, and S. Scott Saavedra, "Technique for determining the angular orientation of molecules bound to the surface of an arbitrary planar optical waveguide," Appl. Opt. 43, 70-78 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987). [CrossRef]
  2. M. Lösche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997). [CrossRef]
  3. A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, UK, 1995).
  4. C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996). [CrossRef]
  5. B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996). [CrossRef]
  6. M. A. Bos, J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. 2. Measurements on porphyrin and cytochrome-c,” Biophys. J. 68, 2573–2579 (1995). [CrossRef] [PubMed]
  7. P. H. Axelsen, M. J. Citra, “Orientational order determination by internal reflection infrared spectroscopy,” Prog. Biophys. Mol. Biol. 66, 227–253 (1996). [CrossRef] [PubMed]
  8. G. J. Simpson, S. G. Westerbuhr, K. L. Rowlen, “Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation,” Anal. Chem. 72, 887–898 (2000). [CrossRef] [PubMed]
  9. A. Tronin, J. K. Blasie, “Variable acquisition angle total internal reflection fluorescence: a new technique for orientation distribution studies of ultrathin films,” Langmuir 17, 3696–3703 (2001). [CrossRef]
  10. D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990). [CrossRef]
  11. P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996). [CrossRef]
  12. P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997). [CrossRef]
  13. P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Am. Chem. Soc. 120, 1665–1671 (1998). [CrossRef]
  14. S. B. Mendes, S. S. Saavedra, “Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory,” Appl. Opt. 39, 612–621 (2000). [CrossRef]
  15. M. B. Pereira, F. Horowitz, “Simple polarimetric approach to direct measurement of the near-surface refractive index in graded-index films,” Appl. Opt. 42, 3268–3270 (2003). [CrossRef] [PubMed]
  16. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  17. D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997). [CrossRef] [PubMed]
  18. J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003). [CrossRef] [PubMed]
  19. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir ed. (Springer-Verlag, Berlin, 1990), pp. 43–50.
  20. J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, “A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides,” Anal. Chem. 74, 1751–1759 (2002). [CrossRef] [PubMed]
  21. L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994). [CrossRef] [PubMed]
  22. S. S. Saavedra, W. M. Reichert, “Prism coupling into polymer integrated optical waveguides with liquid superstrates,” Appl. Spectrosc. 44, 1210–1217 (1990). [CrossRef]
  23. L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1987). [CrossRef]
  24. R. P. Haugland, “Fluorescent and biotinylated dextrans,” in Handbook of Fluorescent Probes and Research Products, 9th ed., J. Gregory, M. T. Z. Spence, eds. (Molecular Probes, Eugene, Ore., 2002), pp. 581–583.
  25. S. Liu, T. M. Sisson, D. F. O’Brien, “Synthesis and polymerization of heterobifunctional amphiphiles to cross-link supramolecular assemblies,” Macromolecules 34, 465–473 (2001). [CrossRef]
  26. E. Kalb, S. Frey, L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992). [CrossRef] [PubMed]
  27. Vesicle fusion is a well-known self-assembly technique. On adsorption at a hydrophilic substrate-buffer interface, fluid bilayer vesicles spontaneously fuse to produce an extended, continuous lipid bilayer. See, for example, Refs. 28 and 29.
  28. E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996). [CrossRef] [PubMed]
  29. A. L. Plant, “Supported hybrid bilayer membranes as rugged cell membrane mimics,” Langmuir 15, 5128–5135 (1999). [CrossRef]
  30. I. Thormaehlen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985). [CrossRef]
  31. M. N. Timbs, N. L. Thompson, “Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery,” Biophys. J. 58, 413–428 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited