OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 10 — Apr. 1, 2004
  • pp: 2054–2058

Refractive-Index Measurements of Zinc Germanium Diphosphide at 300 and 77 K by Use of a Modified Michelson Interferometer

Glen D. Gillen and Shekhar Guha  »View Author Affiliations

Applied Optics, Vol. 43, Issue 10, pp. 2054-2058 (2004)

View Full Text Article

Acrobat PDF (159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to determine the absolute refractive index of materials available in the shape of flat wafers with parallel sides by using interferometric techniques is presented. With this method, nondestructive, sample-specific measurements can be made. The method is tested by using silicon, germanium and zinc selenide, and measurements for both the ordinary and extraordinary axes of ZnGeP2 for temperatures of 300 and 77 K are reported.

© 2004 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials

Glen D. Gillen and Shekhar Guha, "Refractive-Index Measurements of Zinc Germanium Diphosphide at 300 and 77 K by Use of a Modified Michelson Interferometer," Appl. Opt. 43, 2054-2058 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Daimon and A. Masumura, “High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm,” Appl. Opt. 41, 5275–5281 (2002).
  2. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18, 1307–1310 (2001).
  3. P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96, 108–140 (1980).
  4. Z. Huang and J. Chu, “The refractive index dispersion of Hg1−xCdxTe by infrared spectroscopic ellipsometry,” Infrared Phys. 42, 77–80 (2001).
  5. P. Adamson, “Laser diagnostics of nanoscale dielectric films on absorbing substrate by differential reflectivity and ellipsometry,” Opt. Laser Technol. 34, 561–568 (2002).
  6. D. W. Fischer, M. C. Ohmer, P. G. Schunemann, and T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
  7. H. J. Scheel, “Historical aspects of crystal growth technology,” J. Crystal Growth 211, 1–12 (2000).
  8. P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Phase-matched crystal growth of AgGaSe2 and AgGa1−xInxSe2,” J. Crystal Growth 211, 257–264 (2000).
  9. P. Klock, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).
  10. C. A. Proctor, “Index of refraction and dispersion with the interferometer,” Phys. Rev. 24, 195–201 (1907).
  11. M. S. Shumate, “An interferometric measurement of index of refraction,” Engineer’s Degree Thesis (California Institute of Technology, Pasadena, Calif., 1964), http://etd.caltech.edu/etd/available/etd-10302002–153247/.
  12. M. S. Shumate, “Interferometric measurement of large indices of refraction,” Appl. Opt. 5, 327–331 (1966).
  13. J. Chamberlain, J. Haigh, and M. J. Hine, “Phase modulation in far infrared (submillimetre-wave) interferometers: III-laser refractometry,” Infrared Phys. 11, 75–84 (1971).
  14. U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
  15. S. Follonier, Ch. Bosshard, U. Meier, G. Knöpfle, C. Serbutoviez, F. Pan, and P. Günter, “New nonlinear-optical organic crystal: 4-dimethyl-aminobenzaldehyde-4-nitrophenyl-lydrazone,” J. Opt. Soc. Am. B 14, 593–601 (1997).
  16. J. F. H. Nicholls, B. Henderson, and B. H. T. Chai, “Accurate determination of the indices of refraction of nonlinear optical crystals,” Appl. Opt. 36, 8587–8594 (1997).
  17. M. S. Wong, F. Pan, M. Bösch, R. Spreiter, C. Bosshard, P. Günter, and V. Gramlich, “Novel electro-optic molecular cocrystals with ideal chromophoric orientation and large second-order optical nonlinearities,” J. Opt. Soc. Am. B 15, 426–431 (1998).
  18. R. E. Gagnon, P. H. Gammon, H. Kiefte, and M. J. Clouter, “Determination of the refractive index of liquid carbon monoxide,” Appl. Opt. 18, 1237–1239 (1979).
  19. M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, and E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
  20. G. C. Bhar, S. Das, U. Chatterjee, and K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
  21. A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, and V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
  22. H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, and F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
  23. P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
  24. K. L. Vodopyanov and P. G. Schunemann, “Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold,” Opt. Lett. 28, 441–443 (2003).
  25. E. D. Palik, “Germanium (Ge),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 471–478.
  26. E. D. Palik, “Silicone (Si),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 555–568.
  27. E. D. Palik, “Zinc Selenide (ZnSe), Zinc Telluride (ZnTe),” in Handbook of Optical Constants II (Academic, New York, 1991), pp. 751–758.
  28. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
  29. D. W. Fischer and Mc C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited