OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 10 — Apr. 1, 2004
  • pp: 2130–2140

Precision in multivariate optical computing

Frederick G. Haibach and Michael L. Myrick  »View Author Affiliations

Applied Optics, Vol. 43, Issue 10, pp. 2130-2140 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multivariate optical computing (MOC) is an instrumentation design concept for optically demultiplexing the spectroscopic signals in radiometric measurements. The advantages of optically demultiplexing are improved precision, optical throughput, improved reliability, and reduced cost of instrumentation. Conceptually, the instrument implements a multivariate regression vector whose dot product with the spectrum yields a single value related to a spectroscopically active physical property of interest. Instrumentation designs for implementing MOC are diverse, and there has been no systematic comparison of the performance of these designs. This report develops a general expression for comparing the precision of the different instrumentation designs of MOC. Additionally, an expression is given for the transition from low- to high-signal-limited performance of MOC instrumentation. These two general expressions are applied to the traditional multivariate analysis and five examples of MOC.

© 2004 Optical Society of America

OCIS Codes
(000.1570) General : Chemistry
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(200.4560) Optics in computing : Optical data processing
(200.4860) Optics in computing : Optical vector-matrix systems

Original Manuscript: June 18, 2003
Revised Manuscript: December 1, 2003
Published: April 1, 2004

Frederick G. Haibach and Michael L. Myrick, "Precision in multivariate optical computing," Appl. Opt. 43, 2130-2140 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998). [CrossRef]
  2. A. M. C. Prakash, C. M. Stellman, K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999). [CrossRef]
  3. D. E. Battey, J. B. Slater, R. Wludyka, H. Owen, D. M. Pallister, M. D. Morris, “Axial transmissive F/1.8 imaging Raman spectrograph with volume-phase holographic filter and grating,” Appl. Spectrosc. 47, 1913–1919 (1993). [CrossRef]
  4. E. N. Lewis, P. J. Treado, I. W. Levin, “A miniaturized, no-moving-parts Raman spectrometer,” Appl. Spectrosc. 47, 539–543 (1993). [CrossRef]
  5. R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Realization of the Hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer,” Appl. Spectrosc. 54, 1751–1758 (2000). [CrossRef]
  6. T. Diehl, W. Ehrfeld, M. Lacher, T. Zetterer, “Electrostatically operated micromirrors for Hadamard transform spectrometer,” IEEE J. Sel. Top. Quantum Electron. 5, 106–110 (1999). [CrossRef]
  7. R. A. DeVerse, R. M. Hammaker, W. G. Fateley, J. A. Graham, J. D. Tate, “Spectrometry and imaging using a digital micromirror array,” Am. Lab. 30, 112S–120S (1998).
  8. A. G. Ryabenko, G. G. Kasparov, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).
  9. S. E. Bialkowski, “Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals,” Anal. Chem. 58, 2561–2563 (1986). [CrossRef]
  10. O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001). [CrossRef]
  11. M. L. Myrick, S. Soyemi, H. Li, L. Zhang, D. Eastwood “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001). [CrossRef] [PubMed]
  12. N. M. Faber, L. M. C. Buydens, G. Kateman, “Aspects of pseudorank estimation methods based on the eigenvalues of principal component analysis of random matrices,” Chemom. Intell. Lab. Syst. 25, 203–226 (1994). [CrossRef]
  13. K. Booksh, B. R. Kowalski, “Error analysis of the generalized rank annihilation method,” J. Chemom. 8, 45–63 (1994). [CrossRef]
  14. L. A. Goodman, S. J. Haberman, “The analysis of nonadditivity in two-way analysis of variance,” J. Am. Stat. Assoc. 85, 139–145 (1990). [CrossRef]
  15. S. D. Hodges, P. G. Moore, “Data uncertainties and least squares regression,” Appl. Stat. 21, 185–195 (1972). [CrossRef]
  16. K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: a Practical Guide (Wiley, New York, 1998).
  17. H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, England, 1989).
  18. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 477–487 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited