OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 11 — Apr. 10, 2004
  • pp: 2257–2266

Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection

Yury A. Bakhirkin, Anatoliy A. Kosterev, Chad Roller, Robert F. Curl, and Frank K. Tittel  »View Author Affiliations

Applied Optics, Vol. 43, Issue 11, pp. 2257-2266 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tunable-laser absorption spectroscopy in the mid-IR spectral region is a sensitive analytical technique for trace-gas quantification. The detection of nitric oxide (NO) in exhaled breath is of particular interest in the diagnosis of lower-airway inflammation associated with a number of lung diseases and illnesses. A gas analyzer based on a continuous-wave mid-IR quantum cascade laser operating at ∼5.2 μm and on off-axis integrated cavity output spectroscopy (ICOS) has been developed to measure NO concentrations in human breath. A compact sample cell, 5.3 cm in length and with a volume of <80 cm3, that is suitable for on-line and off-line measurements during a single breath cycle, has been designed and tested. A noise-equivalent (signal-to-noise ratio of 1) sensitivity of 10 parts in 109 by volume (ppbv) of NO was achieved. The combination of ICOS with wavelength modulation resulted in a 2-ppbv noise-equivalent sensitivity. The total data acquisition and averaging time was 15 s in both cases. The feasibility of detecting NO in expired human breath as a potential noninvasive medical diagnostic tool is discussed.

© 2004 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(140.5960) Lasers and laser optics : Semiconductor lasers
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(280.3420) Remote sensing and sensors : Laser sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: October 22, 2003
Revised Manuscript: January 5, 2004
Published: April 10, 2004

Yury A. Bakhirkin, Anatoliy A. Kosterev, Chad Roller, Robert F. Curl, and Frank K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994).
  2. D. D. Nelson, J. L. Jimenez, G. J. McRae, M. S. Zahniser, C. E. Kolb, “Remote sensing of NO and NO2 emission from heavy-duty diesel trucks using tunable diode lasers,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 180–190 (1999). [CrossRef]
  3. W. H. Weber, T. J. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Using a wavelength-modulation quantum cascade laser to measure NO concentration in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002). [CrossRef]
  4. S. A. Kharitonov, P. J. Barnes, “Clinical aspects of exhaled nitric oxide,” Eur. Respir. J. 16, 781–792 (2000). [CrossRef] [PubMed]
  5. S. A. Kharitonov, P. J. Barnes, “Exhaled markers of pulmonary disease,” Am. J. Respir. Crit. Care Med. 163, 1693–1722 (2001). [CrossRef] [PubMed]
  6. B. Gaston, J. M. Drazen, J. Loscalso, J. S. Stamler, “The biology of nitrogen oxide in the airways,” Am. J. Respir. Crit. Care Med. 149, 538–551 (1994). [CrossRef] [PubMed]
  7. K. Bhagat, P. Vallance, “Nitric oxide 9 years out,” J. R. Soc. Med. 89, 667–673 (1996). [PubMed]
  8. P. Murtz, L. Menzel, W. Bloch, A. Hess, O. Michel, W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86, 1075–1080 (1999). [PubMed]
  9. D. H. Yates, “Role of exhaled nitric oxide in asthma,” Immunol. Cell Biol. 79, 178–190 (2001). [CrossRef] [PubMed]
  10. L. Prieto, “Measurements of exhaled nitric oxide concentration in asthma. Technical aspects and clinical usefulness,” Alergol. Immunol. Clin. 17, 72–87 (2002).
  11. N. Binding, W. Muller, P. A. Czeschinski, U. Witting, “NO chemiluminescence in exhaled air: interference of compounds from endogenous or exogenous sources,” Eur. Respir. J. 16, 499–503 (2000). [CrossRef] [PubMed]
  12. H. W. Shin, C. M. Rose-Gottron, R. S. Sufi, F. Perez, D. M. Cooper, A. F. Wilson, S. C. George, “Flow-independent nitric oxide exchange parameters in cystic fibrosis,” Am. J. Respir. Crit. Care Med. 165, 349–357 (2002). [CrossRef] [PubMed]
  13. M. Maniscalo, V. Di Mauro, E. Farinaro, L. Carratu, M. Sofia, “Transient decrease of exhaled nitric oxide after acute exposure to passive smoke in healthy subjects,” Arch. Environ. Health 57, 437–440 (2002). [CrossRef]
  14. G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 12, 6602–6605 (1980). [CrossRef]
  15. H. Ganser, W. Urban, J. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003). [CrossRef]
  16. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation,” Appl. Opt. 41, 6018–6029 (2002). [CrossRef] [PubMed]
  17. A. A. Kosterev, F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002). [CrossRef]
  18. E. V. Stepanov, P. V. Zyrianov, V. A. Miliaev, “Single-breath detection with tunable diode lasers for pulmonary disease diagnosis,” in ALT’98 Selected Papers on Novel Laser Methods in Medicine and Biology, A. M. Prokhorov, V. I. Pustovoy, G. P. Kuz’min, eds., Proc. SPIE3829, 103–109 (1999). [CrossRef]
  19. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, N. J. Baillargeon, A. L. Hutchinson, A. Y. Cho, W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001). [CrossRef]
  20. D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002). [CrossRef]
  21. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001). [CrossRef]
  22. A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption,” Chem. Phys. Lett. 293, 331–336 (1998). [CrossRef]
  23. R. Englen, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  24. J. B. Paul, L. Larson, J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001). [CrossRef]
  25. D. S. Baer, J. B. Paul, M. Gupta, A. O’Keefe, “Sensitive absorption measurements in near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261–265 (2002). [CrossRef]
  26. V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75, 755–761 (2002). [CrossRef]
  27. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  28. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “New frontiers in quantum cascade lasers and applications,” IEEE Sel. Top. Quantum Electron. 6, 931–947 (2000). [CrossRef]
  29. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spenser, D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980). [CrossRef] [PubMed]
  30. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  31. S. D. Wehe, D. M. Sonnenfroh, M. G. Allen, C. Gmachl, F. Capasso, “Quantum-cascade laser-based sensor for CO and NO measurements in combustor exhaust flows,” presented at AIAA 2001-3317, 37 Joint Propulsion Conference and Exhibit, Salt Lake City, Utah, July 8–11, 2001.
  32. D. S. Bomse, A. C. Statlon, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of external methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited