OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 11 — Apr. 10, 2004
  • pp: 2332–2336

Correlation between oxygen-deficient center formation and volume compaction in synthetic SiO2 glass upon ArF or F2 excimer-laser irradiation

Yoshiaki Ikuta, Koichi Kajihara, Masahiro Hirano, and Hideo Hosono  »View Author Affiliations


Applied Optics, Vol. 43, Issue 11, pp. 2332-2336 (2004)
http://dx.doi.org/10.1364/AO.43.002332


View Full Text Article

Enhanced HTML    Acrobat PDF (101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Correlations between the refractive-index change and the concentration of an oxygen-deficient center (ODC) induced by thermal treatments and laser irradiation are examined to clarify the origin of laser-induced volume compaction in synthetic SiO2 glasses. A linear correlation between them was clearly observed for thermally induced ODC, whereas no correlation was found for ArF or F2 laser irradiation. The results demonstrate that the dominant origin of laser-induced compaction is not ODC formation. Furthermore, we found that the presence of H2 in SiO2 glass had no influence on volume compaction but enhanced crack formation upon laser irradiation, a phenomenon most likely due to stress corrosion.

© 2004 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3330) Lasers and laser optics : Laser damage
(160.2750) Materials : Glass and other amorphous materials

History
Original Manuscript: July 10, 2003
Revised Manuscript: November 17, 2003
Published: April 10, 2004

Citation
Yoshiaki Ikuta, Koichi Kajihara, Masahiro Hirano, and Hideo Hosono, "Correlation between oxygen-deficient center formation and volume compaction in synthetic SiO2 glass upon ArF or F2 excimer-laser irradiation," Appl. Opt. 43, 2332-2336 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-11-2332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Mori, “Performance of the ArF scanning exposure tool,” in Optical Microlithography XII, L. Van den Hove, ed., Proc. SPIE3679, 522–529 (1999). [CrossRef]
  2. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski, “157 nm: Deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B 17, 3262–3266 (1999). [CrossRef]
  3. M. Rothschild, D. J. Erlich, D. C. Schaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989). [CrossRef]
  4. J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991). [CrossRef]
  5. R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 458–468 (1995).
  6. T. E. Tsai, D. L. Griscom, “Experimental evidence for excitonic mechanism of defect generation in high-purity silica,” Phys. Rev. Lett. 67, 2517–2520 (1991). [CrossRef] [PubMed]
  7. Y. Ikuta, S. Kikugawa, M. Hirano, H. Hosono, “Defect formation and structural alteration in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser,” J. Vac. Sci. Technol. B 18, 2891–2895 (2000). [CrossRef]
  8. D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991). [CrossRef]
  9. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998). [CrossRef]
  10. R. Schenker, W. Oldham, “Effects of compaction on 193 nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996). [CrossRef]
  11. E. M. Wright, M. Mansuripur, V. Liberman, K. Bates, “Spatial pattern of microchannel formation in fused silica irradiated by nanosecond ultraviolet pulses,” Appl. Opt. 38, 5785–5788 (1999). [CrossRef]
  12. D. C. Allan, C. Smith, N. F. Borrelli, T. P. Seward, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996). [CrossRef] [PubMed]
  13. N. F. Borrelli, C. Smith, D. C. Allan, T. P. Seward, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1606–1615 (1997). [CrossRef]
  14. V. Liberman, M. R. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, “Excimer-laser-induced densification of fused silica: laser-fluence and material-grade effects on the scaling law,” J. Non-Cryst. Solids 244, 159–171 (1999). [CrossRef]
  15. F. Piao, W. G. Oldham, E. E. Haller, “The mechanism of radiation-induced compaction in vitreous silica,” J. Non-Cryst. Solids 276, 61–71 (2000). [CrossRef]
  16. Y. Morimoto, T. Igarashi, T. Okanuma, “Vacuum ultraviolet-induced strain in vitreous silica used for xenon lamp bulbs,” J. Non-Cryst. Solids 179, 260–275 (1994). [CrossRef]
  17. V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, A. M. Stoneham, “Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz,” Phys. Rev. B 66, 24108–24121 (2002). [CrossRef]
  18. Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002). [CrossRef]
  19. A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995). [CrossRef]
  20. H. Hosono, Y. Abe, H. Imai, K. Arai, “Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2 glass,” Phys. Rev. B 44, 12043–12045 (1991). [CrossRef]
  21. J. P. Williams, Y. Su, W. R. Strzegowski, B. L. Butler, H. L. Hoover, V. O. Altemose, “Direct determination of water in glass,” Ceram. Bull. 55, 524–527 (1976).
  22. V. K. Khotichenko, G. M. Sochivkin, I. I. Novak, K. N. Kuksenko, “Determining the content of hydrogen dissolved in quartz glass using the methods of Raman scattering and mass spectrometry,” J. Appl. Spectrosc. 46, 632–635 (1987). [CrossRef]
  23. S. Yonemori, A. Masui, M. Noshiro, “Structural study of quartz glasses doped with fluorine by 19F-NMR,” Yogyo Kyoukai Shi 94, 863–866 (1986). [CrossRef]
  24. D. P. Hand, P. St. J. Russell, “Photoinduced refractive index changes in germanosilicate fibers,” Opt. Lett. 15, 102–104 (1990). [CrossRef]
  25. T. A. Michalske, S. W. Freiman, “Molecular mechanism for stress corrosion in vitreous silica,” J. Am. Ceram. Soc. 66, 284–288 (1983). [CrossRef]
  26. B. C. Bunker, “Molecular mechanism for corrosion of silica and silicate glasses,” J. Non-Cryst. Solids 179, 300–308 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited