OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 11 — Apr. 10, 2004
  • pp: 2369–2383

Systematic errors inherent in the current modeling of the reflected downward flux term used by remote sensing models

David S. Turner  »View Author Affiliations


Applied Optics, Vol. 43, Issue 11, pp. 2369-2383 (2004)
http://dx.doi.org/10.1364/AO.43.002369


View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An underlying assumption of satellite data assimilation systems is that the radiative transfer model used to simulate observed satellite radiances has no errors. For practical reasons a fast-forward radiative transfer model is used instead of a highly accurate line-by-line model. The fast model usually replaces the spectral integration of spectral quantities with their monochromatic equivalents, and the errors due to these approximations are assumed to be negligible. The reflected downward flux term contains many approximations of this nature, which are shown to introduce systematic errors. In addition, many fast-forward radiative transfer models simulate the downward flux as the downward radiance along a path defined by the secant of the mean emergent angle, the diffusivity factor. The diffusivity factor is commonly set to 1.66 or to the secant of the satellite zenith angle. Neither case takes into account that the diffusivity factor varies with optical depth, which introduces further errors. I review the two most commonly used methods for simulating reflected downward flux by fast-forward radiative transfer models and point out their inadequacies and limitations. An alternate method of simulating the reflected downward flux is proposed. This method transforms the surface-to-satellite transmittance profile to a transmittance profile suitable for simulating the reflected downward flux by raising the former transmittance to the power of κ, where κ itself is a function of channel, surface pressure, and satellite zenith angle. It is demonstrated that this method reduces the fast-forward model error for low to moderate reflectivities.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: July 21, 2003
Revised Manuscript: December 31, 2003
Published: April 10, 2004

Citation
David S. Turner, "Systematic errors inherent in the current modeling of the reflected downward flux term used by remote sensing models," Appl. Opt. 43, 2369-2383 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-11-2369

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited