OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 12 — Apr. 20, 2004
  • pp: 2393–2396

Temperature Sensor Based on the Power Reflected by a Bragg Grating in a Tapered Fiber

David Monzón-Hernández, José Mora, Pere Pérez-Millán, Antonio Díez, José Luis Cruz, and Miguel V. Andrés  »View Author Affiliations


Applied Optics, Vol. 43, Issue 12, pp. 2393-2396 (2004)
http://dx.doi.org/10.1364/AO.43.002393


View Full Text Article

Acrobat PDF (174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a temperature sensor based on two chirped gratings made in optical fibers tapered by fusion. One of the gratings has a metallic shielding and acts as sensor element, whereas the second grating provides a reference signal. The sensor is interrogated by measuring the power reflected by the two gratings, and the system has an accuracy of 0.05 °C over a linear operation range of more than 10 °C that can be adjusted in the fabrication process.

© 2004 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

Citation
David Monzón-Hernández, José Mora, Pere Pérez-Millán, Antonio Díez, José Luis Cruz, and Miguel V. Andrés, "Temperature Sensor Based on the Power Reflected by a Bragg Grating in a Tapered Fiber," Appl. Opt. 43, 2393-2396 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-12-2393


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, Mass., 1999).
  2. J. M. Gong, J. M. K. Mac Alpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
  3. G. Duck and M. M. Ohn, “Distributed Bragg gratings sensing with a direct group delay measurement technique,” Opt. Lett. 25, 90–92 (2000).
  4. A. Chtcherbakov and P. L. Swart, “Chirped fiber optic Bragg grating strain sensor with sub-carrier phase detection,” Meas. Sci. Technol. 12, 814–817 (2001).
  5. S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
  6. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
  7. M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analisys of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
  8. O. Diminstein, N. Gorbatov, and M. Tur, “Dispersion-based differential wavelength measurements for Bragg grating sensors,” Electron. Lett. 37, 12–14 (2001).
  9. L. A. Ferreira, J. L. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
  10. R. F. Fallon, L. Zhang, L. A. Everral, J. A. R. Williams, and I. Bennion, “All-fiber optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
  11. H. L. Ho, W. Jin, C. C. Chan, Y. Zhou, and X. W. Wang, “A fiber Bragg grating sensor for static and dynamic measurands,” Sens. Actuators A 96, 21–24 (2002).
  12. R. F. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Identical broadband chirped grating interrogation technique for temperature and strain sensing,” Electron. Lett. 33, 705–707 (1997).
  13. M. G. Xu, L. Dong, L. Reekie, J. A. Tucknoctt, and J. L. Cruz, “Temperature independent strain sensor using a chirped Bragg grating in a tapered fiber,” Electron. Lett. 31, 823–825 (1995).
  14. K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped fiber Bragg gratings in photosensitive fiber,” Electron. Lett. 29, 1659–1660 (1995).
  15. L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J. Y. Guilloux, and J. F. Bayon, “Chromatic dispersion compensation by apodised Bragg gratings within controlled tapered fibers,” Opt. Fiber Technol. 3, 267–271 (1997).
  16. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–428 (1992).
  17. J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210, 51–55 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited