OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 12 — Apr. 20, 2004
  • pp: 2490–2499

Geometrical-optics solution to light scattering by droxtal ice crystals

Zhibo Zhang, Ping Yang, George W. Kattawar, Si-Chee Tsay, Bryan A. Baum, Yongxiang Hu, Andrew J. Heymsfield, and Jens Reichardt  »View Author Affiliations

Applied Optics, Vol. 43, Issue 12, pp. 2490-2499 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the phase matrices of droxtals at wavelengths of 0.66 and 11 μm by using an improved geometrical-optics method. An efficient method is developed to specify the incident rays and the corresponding impinging points on the particle surface necessary to initialize the ray-tracing computations. At the 0.66-μm wavelength, the optical properties of droxtals are different from those of hexagonal ice crystals. At the 11-μm wavelength, the phase functions for droxtals are essentially featureless because of strong absorption within the particles, except for ripple structures that are caused by the phase interference of the diffracted wave.

© 2004 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1310) Scattering : Atmospheric scattering
(290.5850) Scattering : Scattering, particles

Original Manuscript: July 19, 2003
Revised Manuscript: January 6, 2004
Published: April 20, 2004

Zhibo Zhang, Ping Yang, George W. Kattawar, Si-Chee Tsay, Bryan A. Baum, Yongxiang Hu, Andrew J. Heymsfield, and Jens Reichardt, "Geometrical-optics solution to light scattering by droxtal ice crystals," Appl. Opt. 43, 2490-2499 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  2. D. K. Lynch, K. Sassen, D. O. Starr, G. Stephens, eds., Cirrus (Oxford U. Press, New York, 2002).
  3. P. Wendling, R. Wendling, H. K. Weikman, “Scattering of solar radiation by hexagonal ice crystals,” Appl. Opt. 18, 2663–2671 (1979). [CrossRef] [PubMed]
  4. Q. Cai, K. N. Liou, “Theory of polarized light scattering by hexagonal ice crystals,” Appl. Opt. 21, 3569–3580 (1982). [CrossRef] [PubMed]
  5. Y. Takano, K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray tracing,” Appl. Opt. 24, 3254–3263 (1985). [CrossRef] [PubMed]
  6. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  7. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993). [CrossRef] [PubMed]
  8. A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  9. K. Muinonen, “Scattering of light by crystals: a modified Kirchhoff approximation,” Appl. Opt. 28, 3044–3050 (1989). [CrossRef] [PubMed]
  10. M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998). [CrossRef]
  11. P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  12. M. I. Mishchenko, W. B. Rossow, A. Macke, A. A. Lacis, “Sensitivity of cirrus cloud albedo, bidirectional reflectance, and optical thickness retrieval to ice-particle shape,” J. Geophys. Res. 101, 16973–16985 (1996). [CrossRef]
  13. K. N. Liou, Y. Takano, P. Yang, “2000: light scattering and radiative transfer by ice crystal clouds: applications to climate research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), Chap. 15, pp. 417–449. [CrossRef]
  14. A. J. Heymsfield, J. Iaquinta, “Cirrus crystal terminal velocities,” J. Atmos. Sci. 57, 916–938 (2000). [CrossRef]
  15. P. R. Lawson, B. A. Baker, C. G. Schmitt, T. J. Jensen, “An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE,” J. Geophys. Res. 106, 14989–15014 (2001). [CrossRef]
  16. E. J. Jensen, O. B. Toon, H. B. Selkirk, J. D. Spinhirne, M. R. Schoeberl, “On the formation and persistence of subvisible cirrus clouds near the tropical tropopause,” J. Geophys. Res. 101, 21361–21375 (1996). [CrossRef]
  17. A. J. Heymsfield, “Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase,” J. Atmos. Sci. 32, 799–808 (1975). [CrossRef]
  18. A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990). [CrossRef]
  19. P. Yang, B.-C. Gao, B. A. Baum, W. Wiscombe, Y. Hu, S. L. Nasiri, A. Heymsfield, G. McFarquhar, L. Miloshevich, “Sensitivity of cirrus bidirectional reflectance in MODIS bands to vertical inhomogeneity of ice crystal habits and size distributions,” J. Geophys. Res. 106, 17267–17291 (2001). [CrossRef]
  20. G. M. McFarquhar, P. Yang, A. Macke, A. J. Baran, “A new parameterization of single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions,” J. Atmos. Sci. 59, 2458–2478 (2002). [CrossRef]
  21. M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to wavelength,” Appl. Opt. 32, 623–625 (1993). [CrossRef]
  22. J. Reichardt, S. Reichardt, P. Yang, T. J. McGee, “Retrieval of polar stratospheric cloud microphysical properties from lidar measurements: dependence on particle shape assumptions,” J. Geophys. Res. 107D, 10.1029/2001JD001021 (2002).
  23. L. Liu, M. I. Mishchenko, “Constraints on PSC particle microphysics derived from lidar observations,” J. Quant. Spectrosc. Radiat. Transfer 70, 817–831 (2001). [CrossRef]
  24. P. Yang, B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, S. A. Ackerman, “Single scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 1159–1169 (2003). [CrossRef]
  25. W. C. Thuman, E. Robinson, “Studies of Alaskan ice-fog particles,” J. Meteorol. 11, 151–156 (1954). [CrossRef]
  26. T. Ohtake, “Unusual crystal in ice fog,” J. Atmos. Sci. 27, 509–511 (1970). [CrossRef]
  27. W. Sun, Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569–5578 (2000). [CrossRef]
  28. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000).
  29. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 775–824 (2003). [CrossRef]
  30. M. I. Mishchenko, A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999). [CrossRef]
  31. S. Havemann, A. J. Baran, J. M. Edwards, “Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 707–720 (2003). [CrossRef]
  32. P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics methods,” J. Opt. Soc. Am. A 12, 162–176 (1995). [CrossRef]
  33. P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  34. P. Yang, K. N. Liou, “Geometric-optics integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef] [PubMed]
  35. A. J. Heymsfield, L. M. Miloshevich, “Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds,” J. Atmos. Sci. 50, 2335–2353 (1993). [CrossRef]
  36. D. Rosenfeld, W. L. Woodley, “Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees,” Nature (London) 405, 440–442 (2000). [CrossRef]
  37. R. Greenler, Rainbows, Halos and Glories (Cambridge U. Press, Cambridge, UK, 1980).
  38. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  39. J. Iaquinta, H. Isaka, P. Personne, “Scattering phase function of bullet rosette ice crystals,” J. Atmos. Sci. 52, 1401–1413 (1995). [CrossRef]
  40. K. N. Liou, Introduction to Atmospheric Radiation (Academic, New York, 1980).
  41. P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, M. I. Mishchenko, D. M. Winker, S. L. Nasiri, “Asymptotic solutions for optical properties of large particles with strong absorption,” Appl. Opt. 40, 1532–1547 (2001). [CrossRef]
  42. Y. K. Lee, P. Yang, M. I. Mishchenko, B. A. Baum, Y. Hu, H.-L. Huang, W. J. Wiscombe, A. J. Baran, “Use of circular cylinders as surrogates for hexagonal pristine ice crystals in scattering calculations at infrared wavelengths,” Appl. Opt. 42, 2653–2664 (2003). [CrossRef] [PubMed]
  43. S. Reichardt, J. Reichardt, “Effect of multiple scattering on depolarization measurements with spaceborne lidars,” Appl. Opt. 42, 3620–3633 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited