OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 12 — Apr. 20, 2004
  • pp: 2510–2527

Detailed Study of an Efficient Blue Laser Source by Second-Harmonic Generation in a Semimonolithic Cavity for the Cooling of Strontium Atoms

Bruce G. Klappauf, Yannick Bidel, David Wilkowski, Thierry Chanelière, and Robin Kaiser  »View Author Affiliations


Applied Optics, Vol. 43, Issue 12, pp. 2510-2527 (2004)
http://dx.doi.org/10.1364/AO.43.002510


View Full Text Article

Acrobat PDF (747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have constructed a blue laser source consisting of an amplified, grating tuned diode laser that is frequency doubled by a KNbO<sub>3</sub> crystal in a compact standing wave cavity and produces as much as 200 mW of internal second-harmonic power. We have analyzed the unusual characteristics of this standing wave cavity to clarify the advantages and disadvantages of this configuration as an alternative to a ring cavity for second-harmonic generation. We emphasize its efficiency and stability and the fact that it has an inherent walk-off compensation, similar to twin crystal configurations. We demonstrate its utility for laser cooling and trapping of earth alkalis by stabilizing the laser to the 461-nm transition of strontium, using a heat pipe, and then forming a magneto-optic trap of strontium from a Zeeman-slowed atomic beam.

© 2004 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(140.0140) Lasers and laser optics : Lasers and laser optics
(190.0190) Nonlinear optics : Nonlinear optics
(230.0230) Optical devices : Optical devices

Citation
Bruce G. Klappauf, Yannick Bidel, David Wilkowski, Thierry Chanelière, and Robin Kaiser, "Detailed Study of an Efficient Blue Laser Source by Second-Harmonic Generation in a Semimonolithic Cavity for the Cooling of Strontium Atoms," Appl. Opt. 43, 2510-2527 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-12-2510


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
  2. H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
  3. Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
  4. U. Sterr, K. Sengstock, J.-H. Müller, and W. Ertmer, “High-resolution isotope shift measurement of the MgI 1S03P1 intercombination transition,” Appl. Phys. B 56, 62–64 (1993).
  5. C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. N. Martinez, P. G. Mickelson, S. B. Nagel, and T. C. Killian, “Using absorption imaging to study ion dynamics in an ultracold neutral plasma,” http://arxiv.org/abs/physics/0310017, accessed 20 December, 2003.
  6. Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
  7. Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
  8. T. P. Dinneen, K. R. Vogel, E. Arimondo, J. L. Hall, and A. Gallagher, “Cold collisions of Sr*-Sr in a magneto-optical trap,” Phys. Rev. A 59, 1216–1222 (1999).
  9. T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth atoms,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
  10. X. Xu, T. H. Loftus, J. L. Hall, A. Gallagher, and J. Ye, “Cooling and trapping of atomic strontium,” J. Opt. Soc. Am. B 20, 968–976 (2003).
  11. M. Bode, I. Freitag, A. Tünnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 22, 1220–1222 (1997).
  12. R. Paschotta, P. Kürz, R. Henking, S. Schiller, and J. Mlynek, “82% Efficient continuous-wave frequency doubling of 1.06 μm with a monolithic MgO:LiNbO3 resonator,” Opt. Lett. 19, 1325–1327 (1994).
  13. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
  14. J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for cw 10.2 μm SHG,” Opt. Commun. 119, 320–326 (1995).
  15. V. D. Volosov, A. G. Kalintsev, and V. N. Krylov, “Phase effects in a double-pass frequency doubler,” Sov. Tech. Phys. Lett. 5, 5–7 (1979).
  16. M. Bode, “Abstimmbare Einfrequenz-Strahlquellen honer Stabilität im infraroten, sichtbaren und ultravioletten Spektralbereich,” Ph.D. dissertation (Universität Hannover, Hannover, Germany, 1999).
  17. R. Paschotta, “Einfach und doppeltresonante monolithische, Frequenzverdoppler für Experimente, in der Quantenoptik,” Ph.D. dissertation (Universität Konstanz, Konstanz, Germany, 1994).
  18. V. D. Volosov and A. G. Kalintsev, “Optimum optical second-harmonic generation in tandem crystals,” Sov. Tech. Phys. Lett. 2, 373–375 (1976).
  19. L. K. Samanta, T. Yanagawa, and Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990).
  20. D. J. Armstrong, W. J. Alford, T. D. Raymond, and A. V. Smith, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14, 460–474 (1997).
  21. J. P. Fève, J. J. Zondy, B. Boulanger, R. Bonnenberger, X. Cabirol, B. Ménaert, and G. Marnier, “Optimized blue light generation in optically contacted walk-off compensated RbTiOAsO4 and KTiOP1−yAsyO4,” Opt. Commun. 161, 359–369 (1999).
  22. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
  23. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–123 (1966).
  24. M. H. Dunn and A. I. Ferguson, “Coma compensation in off-axis laser resonators,” Opt. Commun. 20, 214–218 (1977).
  25. I. Juwiler, A. Arie, A. Skliar, and G. Rosenman, “Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity,” Opt. Lett. 24, 1236–1238 (1999).
  26. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1993).
  27. A. Yariv, Quantum Electronics (Wiley, New York, 1989).
  28. I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” J. Appl. Phys. 90, 4328–4337 (2001).
  29. S. K. Wong, G. Fournier, P. Mathieu, and P. Pace, “Beam divergence effects on nonlinear frequency mixing,” J. Appl. Phys. 71, 1091–1101 (1991).
  30. H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
  31. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16, 1400–1402 (1991).
  32. L. E. Busse, L. Goldberg, and M. R. Surette, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
  33. P. Lodahl, J. L. Sørensen, and E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997).
  34. L. Shiv, J. L. Sørensen, and E. S. Polzik, “Inhibited light-induced absorption in KNbO3,” Opt. Lett. 20, 2270–2272 (1995).
  35. I. Biaggio, P. Kerkoc, L.-S. Wu, B. Zysset, and P. Günter, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507–517 (1992).
  36. K. R. Vogel, “Laser cooling on a narrow atomic transition and measurement of the two-body cold collision loss rate in a strontium magneto-optical trap,” Ph.D dissertation (University of Colorado, Boulder, Colo., 1999).
  37. C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035–4037 (2003).
  38. J. Zimmermann, J. Struckmeier, M. R. Hofmann, and J.-P. Meyn, “Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,” Opt. Lett. 27, 604–606 (2002).
  39. B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
  40. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited