OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 12 — Apr. 20, 2004
  • pp: 2532–2544

Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration

James A. Lock  »View Author Affiliations


Applied Optics, Vol. 43, Issue 12, pp. 2532-2544 (2004)
http://dx.doi.org/10.1364/AO.43.002532


View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Calculation of the radiation trapping force in laser tweezers by use of generalized Lorenz-Mie theory requires knowledge of the shape coefficients of the incident laser beam. The localized version of these coefficients has been developed and justified only for a moderately focused Gaussian beam polarized in the x direction and traveling in the positive z direction. Here the localized model is extended to a beam tightly focused and truncated by a high-numerical-aperture lens, aberrated by its transmission through the wall of the sample cell, and incident upon a spherical particle whose center is on the beam axis. We also consider polarization of the beam in the y direction and propagation in the negative z direction to be able to describe circularly polarized beams and reflected beams.

© 2004 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.4020) Scattering : Mie theory

History
Original Manuscript: August 4, 2003
Revised Manuscript: January 26, 2004
Published: April 20, 2004

Citation
James A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration," Appl. Opt. 43, 2532-2544 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-12-2532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997). [CrossRef]
  3. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993). [CrossRef]
  4. W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994). [CrossRef] [PubMed]
  5. Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  6. P. C. Chaumet, M. Nieto-Vesperinas, “Time-averaged total force on a polar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  7. T. Tlusty, A. Meller, R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998). [CrossRef]
  8. A. C. Dogariu, R. Rajagopalan, “Optical traps as force transducers: the effects of focusing the trapping beam through a dielectric interface,” Langmuir 16, 2770–2778 (2000). [CrossRef]
  9. A. Rohrbach, E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001). [CrossRef]
  10. A. Rohrbach, E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002). [CrossRef] [PubMed]
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  12. R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992). [CrossRef]
  13. S. Nemoto, H. Togo, “Axial force acting on a dielectric sphere in a focused laser beam,” Appl. Opt. 37, 6386–6394 (1998). [CrossRef]
  14. M. Gu, P. C. Ke, X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666–3668 (1997). [CrossRef]
  15. T. Wohland, A. Rosin, E. H. K. Stelzer, “Theoretical determination of the influence of polarization on forces exerted by optical tweezers,” Optik (Stuttgart) 102, 181–190 (1996).
  16. J. S. Kim, S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983). [CrossRef]
  17. G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  18. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  19. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  20. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
  21. B. Maheu, G. Grehan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989). [CrossRef]
  22. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 208–209.
  23. G. Gouesbet, G. Grehan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
  24. J. A. Lock, “Improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef] [PubMed]
  25. B. Maheu, G. Grehan, G. Gouesbet, “Generalized Lorenz-Mie theory: first exact values and comparisons with the localized approximation,” Appl. Opt. 26, 23–25 (1987). [CrossRef] [PubMed]
  26. G. Grehan, B. Maheu, G. Gouesbet, “Scattering of laser beams from Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef] [PubMed]
  27. J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  28. G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  29. K. F. Ren, G. Grehan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994). [CrossRef]
  30. G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Grehan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995). [CrossRef]
  31. K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996). [CrossRef] [PubMed]
  32. H. Polaert, G. Grehan, G. Gouesbet, “Improved standard beams with application to reverse radiation pressure,” Appl. Opt. 37, 2435–2440 (1998). [CrossRef]
  33. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004). [CrossRef] [PubMed]
  34. H. Felgner, O. Muller, M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–982 (1995). [CrossRef] [PubMed]
  35. P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984). [CrossRef]
  36. S. Chang, S. S. Lee, “Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam,” J. Opt. Soc. Am. B 2, 1853–1860 (1985). [CrossRef]
  37. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, New York, 1985), p. 668, Eqs. (12.81) and (12.81a) and footnote 2.
  38. G. Gouesbet, J. A. Lock, G. Grehan, “Partial-wave representations of laser beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef] [PubMed]
  39. G. Gouesbet, “Partial-wave expansions and properties of axisymmetric beams,” Appl. Opt. 35, 1543–1555 (1996). [CrossRef] [PubMed]
  40. S. A. Schaub, J. P. Barton, D. R. Alexander, “Simplified scattering coefficient expressions for a spherical particle located on the propagation axis of a fifth-order Gaussian beam,” Appl. Phys. Lett. 55, 2709–2711 (1989). [CrossRef]
  41. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  42. J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  43. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959). [CrossRef]
  44. R. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  45. P. Torok, P. Varga, Z. Laczik, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef]
  46. P. Torok, P. Varga, Z. Laczik, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation (errata),” J. Opt. Soc. Am. A 12, 1605 (1995). [CrossRef]
  47. P. Torok, P. Varga, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995). [CrossRef]
  48. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 634, Eq. (5.52.1).
  49. Ref. 48, p. 692, Eq. (6.574.2).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited