OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 13 — May. 1, 2004
  • pp: 2744–2751

Quadratic behavior of fiber Bragg grating temperature coefficients

Gordon M. H. Flockhart, Robert R. J. Maier, James S. Barton, William N. MacPherson, Julian D. C. Jones, Karen E. Chisholm, Lin Zhang, Ian Bennion, Ian Read, and Peter D. Foote  »View Author Affiliations


Applied Optics, Vol. 43, Issue 13, pp. 2744-2751 (2004)
http://dx.doi.org/10.1364/AO.43.002744


View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 °C to 80 °C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(230.1480) Optical devices : Bragg reflectors

History
Original Manuscript: July 14, 2003
Revised Manuscript: November 24, 2003
Published: May 1, 2004

Citation
Gordon M. H. Flockhart, Robert R. J. Maier, James S. Barton, William N. MacPherson, Julian D. C. Jones, Karen E. Chisholm, Lin Zhang, Ian Bennion, Ian Read, and Peter D. Foote, "Quadratic behavior of fiber Bragg grating temperature coefficients," Appl. Opt. 43, 2744-2751 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-13-2744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31, 297–324 (1999). [CrossRef]
  2. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156–161 (1997). [CrossRef]
  3. D. R. Hjelme, L. Bjerkan, S. Neegard, J. S. Rambech, J. V. Aarsnes, “Application of Bragg grating sensors in the characterization of scaled marine vehicle models,” Appl. Opt. 36, 328–336 (1997). [CrossRef] [PubMed]
  4. K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424–1432 (1997). [CrossRef]
  5. G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994). [CrossRef]
  6. S. Gupta, T. Mizunami, T. Yamao, T. Shimomura, “Fiber Bragg grating cryogenic temperature sensors,” Appl. Opt. 35, 5202–5205 (1996). [CrossRef] [PubMed]
  7. M. B. Reid, M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37, 237–240 (1998). [CrossRef]
  8. S. W. James, R. P. Tatam, A. Twin, M. Morgan, P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535–1539 (2002). [CrossRef]
  9. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, I. Riant, “Temperature-induced reversible changes in spectral characteristics of fiber Bragg gratings,” Appl. Opt. 40, 2632–2642 (2001). [CrossRef]
  10. G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani, H. C. Lefèvre, eds., Proc. SPIE4185, 25–28 (2000).
  11. O. V. Butov, K. M. Golant, I. V. Nikolin, “Ultra-thermo-resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002). [CrossRef]
  12. T. S. Priest, K. T. Jones, G. B. Scelsi, G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), Paper OWC41.
  13. T. Toyoda, M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16, L97–L100 (1983). [CrossRef]
  14. F. M. Haran, J. K. Rew, P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163–1166 (1998). [CrossRef]
  15. G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994). [CrossRef]
  16. G. Ghosh, “Model for the thermo-optical coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995). [CrossRef]
  17. D. A. Flavin, R. McBride, J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347–353 (1999). [CrossRef]
  18. K. B. Rochford, S. D. Dyer, “Demultiplexing of interferometrically interrogated fiber Bragg grating sensors using Hilbert transform processing,” J. Lightwave Technol. 17, 831–836 (1999). [CrossRef]
  19. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, Calif., 1999).
  20. J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74, 1689–1691 (1991). [CrossRef]
  21. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991). [CrossRef]
  22. G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited