OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 13 — May. 1, 2004
  • pp: 2786–2791

Effects of Sample Temperature in Femtosecond Single-Pulse Laser-Induced Breakdown Spectroscopy

Jon Scaffidi, William Pearman, J. Chance Carter, Bill W. Colston, and S. Michael Angel  »View Author Affiliations


Applied Optics, Vol. 43, Issue 13, pp. 2786-2791 (2004)
http://dx.doi.org/10.1364/AO.43.002786


View Full Text Article

Acrobat PDF (111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As much as tenfold atomic emission enhancements have been observed in experiments combining nanosecond (ns) and femtosecond (fs) laser pulses in an orthogonal dual-pulse configuration for laser-induced breakdown spectroscopy (ns–fs orthogonal dual-pulse LIBS). In the examination of one of several potential sources of these atomic emission enhancements (sample heating by a ns air spark), minor reductions in atomic emission and as much as 15-fold improvements in mass removal have been observed for fs single-pulse LIBS of heated brass and aluminum samples. These results suggest that, although material removal with a high-powered, ultrashort fs pulse is temperature dependent, sample heating by the ns air spark is not the source of the atomic emission enhancements observed in ns–fs orthogonal dual-pulse LIBS.

© 2004 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic

Citation
Jon Scaffidi, William Pearman, J. Chance Carter, Bill W. Colston, and S. Michael Angel, "Effects of Sample Temperature in Femtosecond Single-Pulse Laser-Induced Breakdown Spectroscopy," Appl. Opt. 43, 2786-2791 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-13-2786


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Brech and L. Cross, “Optical microemission stimulated by a ruby masser,” Appl. Spectrosc. 16, 59 (1962).
  2. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  3. Y. I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, Huntington, New York, 2000).
  4. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
  5. H. E. Bauer, F. Leis, and K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta Part B 53, 1815–1825 (1998).
  6. M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
  7. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
  8. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
  9. P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta, 429, 269–278 (2001).
  10. W. Pearman, J. Scaffidi, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry,” Appl. Opt. 42, 6085–6093 (2003).
  11. J. R. Wachter and D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
  12. M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001).
  13. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
  14. M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
  15. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001).
  16. J. Gruber, J. Heitz, H. Strasser, D. Bauerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
  17. B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
  18. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochin. Acta Part B 56, 777–793 (2001).
  19. C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
  20. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
  21. S. A. Junk, “Ancient artefacts and modern analytical techniques—usefulness of laser ablation ICP-MS demonstrated with ancient gold coins,” Nucl. Instrum. Methods Phys. Res. B 181, 723–727 (2001).
  22. C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  23. Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, and J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
  24. Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, and J. Sneddon, “Interaction of an excimer-laser beam with metals. Part III: the effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
  25. H. Matsuta and K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
  26. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
  27. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
  28. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
  29. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
  30. K. L. Eland, D. N. Stratis, J. C. Carter, and S. M. Angel, “Development of a dual-pulse fiber optics LIBS probe for in-situ elemental analyses,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh and R. Spellicy, eds., Proc. SPIE 3853, 288–294 (1999).
  31. D. N. Stratis, K. L. Eland, and S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh and R. Spellicy, eds., Proc. SPIE 3534, 592–600 (1999).
  32. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
  33. L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
  34. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
  35. J. Scaffidi, J. Peder, B. Pearman, S. R. Goode, B. W. Colston, Jr., J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
  36. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
  37. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
  38. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
  39. R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
  40. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).
  41. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
  42. A. Sullivan, J. Bonlie, D. F. Price, and W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt. Lett. 21, 603–605 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited