OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2824–2832

Mueller polarimetric imaging system with liquid crystals

Blandine Laude-Boulesteix, Antonello De Martino, Bernard Drévillon, and Laurent Schwartz  »View Author Affiliations

Applied Optics, Vol. 43, Issue 14, pp. 2824-2832 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new polarimetric imaging system based on liquid-crystal modulators, a spectrally filtered white-light source, and a CCD camera. The whole Mueller matrix image of the sample is measured in approximately 5 s in the transmission mode. The instrument design, together with an original and easy-to-operate calibration procedure, provides high accuracy over a wide spectral range (500–700 nm). This accuracy has been assessed by measurement of a linear polarizer at different orientations and a thick wedged quartz plate as an example of a partially depolarized retarder. Polarimetric images of a stained hepatic biopsy with significant fibrosis have been taken at several wavelengths. The optical properties of Picrosirius Red stained collagen (diattenuation, retardance, and polarizance) have been measured independently from each other between 500 and 700 nm.

© 2004 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

Original Manuscript: September 29, 2003
Revised Manuscript: February 18, 2004
Published: May 10, 2004

Blandine Laude-Boulesteix, Antonello De Martino, Bernard Drévillon, and Laurent Schwartz, "Mueller polarimetric imaging system with liquid crystals," Appl. Opt. 43, 2824-2832 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. A. Azzam, “Photopolarimeter using two modulated optical rotators,” Opt. Lett. 2, 181–183 (1977). [CrossRef]
  2. J. L. Pezzaniti, R. A. Chipman, “High-resolution Mueller matrix imaging polarimetry for understanding high-resolution optoelectronic modulators,” in Photonics for Processors, Neural Networks, and Memories II, J. L. Horner, B. Javidi, S. T. Kowel, eds., Proc. SPIE2297, 468–480 (1994). [CrossRef]
  3. R. W. Collins, J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16, 1997–2006 (1999). [CrossRef]
  4. F. Delplancke, “Automated high-speed Mueller matrix scatterometer,” Appl. Opt. 36, 5388–5395 (1997). [CrossRef] [PubMed]
  5. S. N. Jasperson, S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969). [CrossRef]
  6. E. Compain, B. Drévillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instrum. 69, 1574–1580 (1998). [CrossRef]
  7. J. S. Tyo, T. S. Turner, “Imaging spectropolarimeters for use in visible and infrared remote sensing,” in Imaging Spectrometry V, M. R. Descour, S. S. Shen, eds., Proc. SPIE3753, 214–225 (1999). [CrossRef]
  8. J. M. Bueno, P. Artal, “Double pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999). [CrossRef]
  9. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef] [PubMed]
  10. J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, G. L. Coté, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7(3), 341–349 (2002). [CrossRef]
  11. P.-Y. Gerligand, M. H. Smith, R. A. Chipman, “Polarimetric images of a cone,” Opt. Express 4, 420–430 (1999), http://www.opticsexpress.org. [CrossRef] [PubMed]
  12. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, The Netherlands, 1989).
  13. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of Tutorial Texts in Optical Engineering (SPIE Press, Bellingham, Wash., 2000).
  14. S.-Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  15. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic errors,” Appl. Opt. 41, 619–630 (2002). [CrossRef] [PubMed]
  16. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  17. E. Compain, S. Poirier, B. Drévillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  18. P. Whittaker, “Polarized light in biomedical research,” Microsc. Anal. 44, 15–17 (1995).
  19. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited