OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2846–2860

Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm

Thanassis Papaioannou, Norris W. Preyer, Qiyin Fang, Adam Brightwell, Michael Carnohan, Greg Cottone, Russel Ross, Linda R. Jones, and Laura Marcu  »View Author Affiliations

Applied Optics, Vol. 43, Issue 14, pp. 2846-2860 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber-optic probes are widely used in optical spectroscopy of biological tissues and other turbid media. Only limited information exists, however, on the ways in which the illumination-collection geometry and the overall probe design influence the interrogation of media. We have investigated both experimentally and computationally the effect of probe-to-target distance (PTD) on the diffuse reflectance collected from an isotropically (Lambertian) scattering target and an agar-based tissue phantom. Studies were conducted with three probes characterized by either common (single-fiber) or separate (two bifurcated multifiber probes) illumination and collection channels. This study demonstrates that PTD, probe design, and tissue scattering anisotropy influence the extent of the transport of light into the medium, the light-collection efficiency, and the sampling volume of collected light. The findings can be applied toward optimization of fiber-optic probe designs for quantitative optical spectroscopy of turbid media including biological tissues.

© 2004 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.7050) Scattering : Turbid media
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: June 16, 2003
Revised Manuscript: February 25, 2004
Published: May 10, 2004

Thanassis Papaioannou, Norris W. Preyer, Qiyin Fang, Adam Brightwell, Michael Carnohan, Greg Cottone, Russel Ross, Linda R. Jones, and Laura Marcu, "Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm," Appl. Opt. 43, 2846-2860 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003). [CrossRef] [PubMed]
  2. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richardskortum, “In-vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10,193–10,197 (1994). [CrossRef]
  3. L. S. Greek, H. G. Schulze, C. A. Haynes, M. W. Blades, R. F. B. Turner, “Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy,” Appl. Opt. 35, 4086–4095 (1996). [CrossRef] [PubMed]
  4. M. G. Shim, B. C. Wilson, E. Marple, M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619–627 (1999). [CrossRef]
  5. A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, U. Utzinger, R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998). [CrossRef] [PubMed]
  6. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998). [CrossRef]
  7. M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source-detector separation,” Appl. Opt. 39, 6508–6514 (2000). [CrossRef]
  8. S. P. Lin, L. H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997). [CrossRef] [PubMed]
  9. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997). [CrossRef] [PubMed]
  10. T. P. Moffitt, S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001). [CrossRef]
  11. A. J. Welch, M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995). [CrossRef]
  12. Z. Y. Zhu, M. C. Yappert, “Determination of the effective depth for double-fiber fluorometric sensors,” Appl. Spectrosc. 46, 919–924 (1992). [CrossRef]
  13. Z. Y. Zhu, M. C. Yappert, “Determination of effective depth and equivalent pathlength for a single-fiber fluorometric sensor,” Appl. Spectrosc. 46, 912–918 (1992). [CrossRef]
  14. T. F. Cooney, H. T. Skinner, S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. 2. Tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50, 849–860 (1996). [CrossRef]
  15. T. F. Cooney, H. T. Skinner, S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. 1. Model for liquids and transparent solids,” Appl. Spectrosc. 50, 836–848 (1996). [CrossRef]
  16. P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation and optimization of adjacent optical fiber sensors,” Appl. Opt. 25, 3448–3454 (1986). [CrossRef]
  17. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001). [CrossRef]
  18. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002). [CrossRef] [PubMed]
  19. T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003). [CrossRef] [PubMed]
  20. C. F. Zhu, Q. Liu, N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003). [CrossRef] [PubMed]
  21. Q. Liu, C. F. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003). [CrossRef] [PubMed]
  22. P. R. Bargo, S. A. Prahl, S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003). [CrossRef] [PubMed]
  23. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998). [CrossRef]
  24. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001). [CrossRef]
  25. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999). [CrossRef]
  26. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989). [CrossRef] [PubMed]
  27. B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997). [CrossRef]
  28. J. D. Pitts, M. A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72, 3061–3072 (2001). [CrossRef]
  29. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001). [CrossRef]
  30. L. Marcu, M. C. Fishbein, J. M. I. Maarek, W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001). [CrossRef] [PubMed]
  31. L. Marcu, W. S. Grundfest, J. M. I. Maarek, “Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” Photochem. Photobiol. 69, 713–721 (1999). [CrossRef] [PubMed]
  32. J. M. I. Maarek, L. Marcu, M. C. Fishbein, W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27, 241–254 (2000). [CrossRef] [PubMed]
  33. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Muller, ed., Volume 1035 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.
  34. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues—principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990). [CrossRef]
  35. L. I. Grossweiner, J. L. Karagiannes, L. R. Jones, P. W. Johnson, “Reflection and transmission coefficients in plane-parallel layers with refractive-index mismatch,” Appl. Opt. 31, 106–109 (1992). [CrossRef] [PubMed]
  36. L. R. Jones, L. I. Grossweiner, “Singlet oxygen generation by photofrin(R) in homogeneous and light-scattering media,” J. Photochem. Photobiol. B 26, 249–256 (1994). [CrossRef] [PubMed]
  37. L. L. Carter, E. D. Cashwell, “Particle transport simulation with the Monte Carlo method,” ERDA Critical Review Series, TID-26607 (U.S. Energy Research and Development Administration, Technical Information Center, Oak Ridge, Tenn., 1975).
  38. L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002). [CrossRef]
  39. K. Vishwanath, B. Pogue, M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002). [CrossRef] [PubMed]
  40. S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited