OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2874–2883

Ultrahigh-Resolution Full-Field Optical Coherence Tomography

Arnaud Dubois, Kate Grieve, Gael Moneron, Romain Lecaque, Laurent Vabre, and Claude Boccara  »View Author Affiliations


Applied Optics, Vol. 43, Issue 14, pp. 2874-2883 (2004)
http://dx.doi.org/10.1364/AO.43.002874


View Full Text Article

Acrobat PDF (912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a white-light interference microscope for ultrahigh-resolution full-field optical coherence tomography of biological media. The experimental setup is based on a Linnik-type interferometer illuminated by a tungsten halogen lamp. En face tomographic images are calculated by a combination of interferometric images recorded by a high-speed CCD camera. Spatial resolution of 1.8 μm × 0.9 μm (transverse × axial) is achieved owing to the extremely short coherence length of the source, the compensation of dispersion mismatch in the interferometer arms, and the use of relatively high-numerical-aperture microscope objectives. A shot-noise-limited detection sensitivity of 90 dB is obtained in an acquisition time per image of 4 s. Subcellular-level images of plant, animal, and human tissues are presented.

© 2004 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.3170) Microscopy : Interference microscopy

Citation
Arnaud Dubois, Kate Grieve, Gael Moneron, Romain Lecaque, Laurent Vabre, and Claude Boccara, "Ultrahigh-Resolution Full-Field Optical Coherence Tomography," Appl. Opt. 43, 2874-2883 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-14-2874


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
  2. J. C. Hebden and D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 9, 311–313 (1994).
  3. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
  4. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
  5. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  6. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  7. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 2nd ed.(Plenum, New York, 1995).
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  9. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
  10. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
  11. B. E. Bouma and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).
  12. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
  13. B. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
  14. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–865 (1998).
  15. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
  16. B. Považay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, E. Scherzer, and W. Drexler, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 20, 1800–1802 (2002).
  17. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
  18. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
  19. S. Bourquin, P. Seitz, R. P. Salathé, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).
  20. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberlé, C. Rullière, P. E. Minot, M. Lassègues, and J. E. Surlève Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064 (2002).
  21. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–533 (2002).
  22. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 2059–2064 (2002).
  23. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
  24. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE 775, 233–247 (1987).
  25. G. S. Kino and S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
  26. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996).
  27. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–593 (1994).
  28. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22, 1039–1041 (1997).
  29. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
  30. H. W. Wang, A. M. Rollins, and J. A. Izatt, “High-speed full-field optical coherence microscopy,” in Conference Domain Optical Methods in Biomedical Science and Clinical Applications III, V. V. Tuchin and J. A. Izatt, eds., Proc. SPIE 3598, 204–212 (1999).
  31. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express 7, 292–298 (2000).
  32. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761 (2003).
  33. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
  34. J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
  35. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
  36. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle reduction techniques,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds., (Marcel Dekker, New York, 2002), pp. 175–201.
  37. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
  38. B. E. Bouma and G. J. Tearney, “Optical source,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 67–97.
  39. H. Ishikawa, R. Gürses-Özden, S. T. Hoh, H. L. Dou, J. M. Liebmann, and R. Ritch, “Grayscale and proportion-corrected optical coherence tomography images,” Ophthalmic Surg. Lasers 31, 223–228 (2000).
  40. P. N. T. Wells and M. Halliwell, “Speckle in ultrasonic imaging,” Ultrasonics 19, 225–229 (1981).
  41. J. M. Schmitt, “Array detection for speckle reduction in optical coherence tomography,” Phys. Med. Biol. 42, 1427–1439 (1997).
  42. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000).
  43. R. Berstein, “Adaptative nonlinear filters for simultaneous removal of different kinds of noise in images,” IEEE Trans. Circuits Syst. 34, 1275–1291 (1987).
  44. G. Franceschetti, V. Pascazio, and G. Schirinzi, “Iterative homomorphic technique for speckle reduction in synthetic-aperture imaging,” J. Opt. Soc. Am. A 12, 686–694 (1995).
  45. D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptative noise smoothing for images with signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985).
  46. P. A. Moulin, “A wavelet regularization method for diffuse radar-target imaging and speckle-noise reduction,” J. Math. Imaging Vision 3, 123–134 (1993).
  47. S. H. Xiang and Y. T. Zhang, “Sensitivity enhancement using nonlinear optical wavelet thresholding for two-dimensional medical ultrasound transducer,” Biomed. Eng. Appl. Basis Commun. 9, 91–100 (1997).
  48. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
  49. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997).
  50. K. M. Yung and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1996).
  51. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
  52. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102, 217–229 (1995).
  53. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
  54. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112, 1584–1589 (1994).
  55. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
  56. J. R. Wilkins, C. A. Puliafito, M. R. Hee, J. S. Duker, E. Reichel, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103, 2142–2151 (1996).
  57. M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105, 360–370 (1998).
  58. H. Hoerauf and R. Birngruber, “Optical coherence tomography in the anterior segment of the eye,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 487–503.
  59. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
  60. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1995).
  61. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human urologic tissue using optical coherence tomography,” J. Urol. 75, 1915–1920 (1997).
  62. F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, A. V. Shakhov, N. M. Shakhova, L. B. Snopova, A. B. Teerenteva, E. V. Zagainova, Y. P. Chumakov, and I. A. Kuznetzova, “Endoscopic applications of optical coherence tomography,” Opt. Express 3, 257–262 (1998).
  63. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
  64. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikono, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1, 432–440 (1997).
  65. C. Pitris, A. Goodman, S. A. Boppart, J. J. Libus, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of gynecologic neoplasms using optical coherence tomography,” Obstet. Gynecol. 93, 135–139 (1999).
  66. J. Welzel, E. Lankenau, R. Birngruber, and R. Egelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
  67. A. M. Rollins, A. Chak, C. K. Wong, K. Kobayashi, M. V. Sivak, R. Ung-arunyawee, and J. A. Izatt, “Real-time in vivo imaging of gastrointestinal ultrastructures using optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited