OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2915–2919

Secure holographic memory by double-random polarization encryption

Osamu Matoba and Bahram Javidi  »View Author Affiliations

Applied Optics, Vol. 43, Issue 14, pp. 2915-2919 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel optical encryption based on polarization is proposed and applied to a holographic memory system. Original binary data are described as two orthogonal linear polarization states. These input polarization states can be modulated by use of two polarization-modulation masks located at the input and the Fourier planes. Each modulation mask can convert an input polarization state into a random polarization state. Once encrypted, the polarization state is recorded as a hologram. For the decryption, the hologram can generate a vector phase-conjugate beam. When the same polarization-modulation masks are used, the vector phase-conjugate readout can cancel the polarization modulation at each mask, and the original polarization state can be recovered. The encryption of the proposed method is evaluated numerically. We also present experimental results by demonstrating holographic recording in a bacteriorhodopsin film.

© 2004 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(070.5040) Fourier optics and signal processing : Phase conjugation
(210.2860) Optical data storage : Holographic and volume memories
(260.5430) Physical optics : Polarization

Original Manuscript: September 3, 2003
Revised Manuscript: February 17, 2004
Published: May 10, 2004

Osamu Matoba and Bahram Javidi, "Secure holographic memory by double-random polarization encryption," Appl. Opt. 43, 2915-2919 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef] [PubMed]
  2. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994). [CrossRef]
  3. B. Javidi, G. Zhang, J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054–1058 (1997). [CrossRef] [PubMed]
  4. N. Yoshikawa, M. Itoh, T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483–1485 (1998). [CrossRef]
  5. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  6. P. C. Mogensen, J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000). [CrossRef]
  7. S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulators,” IEEE Photon. Technol. Lett. 3, 1133–1135 (1991). [CrossRef]
  8. O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6784–6790 (1999). [CrossRef]
  9. G. Unnikrishnan, J. Joseph, K. Singh, “Fractional Fourier domain encrypted holographic memory by use of an anamorphic optical system,” Appl. Opt. 40, 299–306 (2001). [CrossRef]
  10. J. A. David, R. P. Tiangco, D. M. Cottrell, D. C. O’Shea, M. K. Poutous, “Four-plane space-variant Fresnel-transform optical processor with a random phase encoder,” Appl. Opt. 35, 3819–3828 (1996). [CrossRef]
  11. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  12. H. Coufal, D. Psaltis, G. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000). [CrossRef]
  13. N. Towghi, B. Javidi, Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999). [CrossRef]
  14. X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 39, 6689–6694 (2000). [CrossRef]
  15. B. Javidi, T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000). [CrossRef]
  16. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40, 2310–2315 (2001). [CrossRef]
  17. K. Kawano, T. Ishii, J. Minabe, T. Niitsu, Y. Nishikata, K. Baba, “Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzene units in the side chain,” Opt. Lett. 24, 1269–1271 (1999). [CrossRef]
  18. J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonhara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000). [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1997) Chap. 1.4, pp. 23–36.
  20. E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum Electron. 17, 450–454 (1987). [CrossRef]
  21. Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited