OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2930–2939

Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere

Andreas Behrendt, Takuji Nakamura, and Toshitaka Tsuda  »View Author Affiliations


Applied Optics, Vol. 43, Issue 14, pp. 2930-2939 (2004)
http://dx.doi.org/10.1364/AO.43.002930


View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the performance of a combined Raman lidar. The temperature is measured with the rotational Raman technique and with the integration technique simultaneously. Additionally measured parameters are particle extinction and backscatter coefficients and water vapor mixing ratio. In a previous stage of the system, instrumental problems restricted the performance. We describe how we rebuilt the instrument and overcame these restrictions. As a result, the measurement time for the same spatial resolution and accuracy of the rotational Raman temperature measurements is reduced by a factor of ∼4.3, and their range could be extended for the first time to the upper stratosphere.

© 2004 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.3640) Remote sensing and sensors : Lidar
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: April 25, 2003
Revised Manuscript: October 24, 2003
Published: May 10, 2004

Citation
Andreas Behrendt, Takuji Nakamura, and Toshitaka Tsuda, "Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere," Appl. Opt. 43, 2930-2939 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-14-2930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained with lidar between 30 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1981). [CrossRef]
  2. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993). [CrossRef]
  3. T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation and optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, D6, 6177–6187 (1998).
  4. R. G. Strauch, V. E. Derr, R. E. Cupp, “Atmospheric temperature measurements using Raman backscatter,” Appl. Opt. 10, 2665–2669 (1971). [CrossRef] [PubMed]
  5. W. P. G. Moskowitz, G. Davidson, D. Sipler, C. R. Philbrick, P. Dao, “Raman augmentation for Rayleigh lidar,” in Proceedings of the 14th International Laser Radar Conference. (Istitute di Ricerca sulle Onde Elettromagnetiche, Comitato Nayionale per le Scienge, Florence, Italy, 1988).
  6. P. Keckhut, M. L. Chanin, A. Hauchecorne, “Stratospheric temperature measurement using Raman lidar,” Appl. Opt. 29, 5182–5185 (1990). [CrossRef] [PubMed]
  7. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972). [CrossRef]
  8. J. Cooney, M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976). [CrossRef] [PubMed]
  9. R. Gill, K. Geller, J. Farina, J. Cooney, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979). [CrossRef]
  10. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983). [CrossRef] [PubMed]
  11. D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993). [CrossRef]
  12. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993). [CrossRef] [PubMed]
  13. C. R. Philbrick, “Raman lidar measurements of atmospheric properties,” in Atmospheric Propagation and Remote Sensing III, W. A. Flood, W. B. Miller, eds., Proc. SPIE2222, 922–931 (1994). [CrossRef]
  14. A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000). [CrossRef]
  15. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002). [CrossRef]
  16. A. Hauchecorne, M. L. Chanin, P. Keckhut, D. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992). [CrossRef]
  17. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecome, K. Adolfsen, “The ALOMAR Rayeligh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).
  18. S. Fukao, T. Sato, T. Tsuda, S. Kato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 1. Antenna and power amplifiers,” Radio Sci. 20, 1155–1168 (1985). [CrossRef]
  19. S. Fukao, T. Tsuda, T. Kato, S. Sato, K. Wakasugi, T. Makihira, “The MU radar with an active phased array system. 2. In-house equipment,” Radio Sci. 20, 1169–1176 (1985). [CrossRef]
  20. A. Behrendt, C. Weitkamp, “Optimizing the spectral parameters of a lidar receiver for rotational Raman temperature measurements,” in Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 113–116.
  21. A. Behrendt, T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express, 10, 805–817 (2002), http://www.opticsexpress.org . [CrossRef] [PubMed]
  22. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969). [CrossRef]
  23. J. Cooney, “Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970). [CrossRef]
  24. V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999). [CrossRef]
  25. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef]
  26. D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 786.
  27. D. Rees, J. J. Barnett, K. Labitzke, eds., CIRA 1986, Part II: Middle Atmosphere Models, Adv. Space Res. (COSPAR)10(12) (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited