OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2978–2985

Deposition and characterization of silica-based films by helicon-activated reactive evaporation applied to optical waveguide fabrication

Douglas A. P. Bulla, Wei-Tang Li, Christine Charles, Rod Boswell, Adrian Ankiewicz, and John Love  »View Author Affiliations


Applied Optics, Vol. 43, Issue 14, pp. 2978-2985 (2004)
http://dx.doi.org/10.1364/AO.43.002978


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Planar silicon dioxide optical waveguides were deposited by use of a plasma-activated reactive evaporation system, at a low deposition temperature and with reduced hydrogen contamination, on thermally oxidized silicon wafers. The deposited films show a refractive-index inhomogeneity of less than 0.1%, a thickness nonuniformity of less than 5%, and a material birefringence of approximately 5 × 10-4. Rib-type channel waveguides were formed on the deposited films by means of hydrofluoric acid etching. The transmission loss of the rib waveguides is determined to be as low as 0.3 dB/cm at a wavelength of 1310 nm for TE polarization, after subtraction of the calculated leakage and scattering losses. Owing to the presence of the OH vibrational overtone band, an additional loss peak of 1 dB/cm is found near the 1385-nm wavelength. The experimental results of transmission loss at wavelengths of 1310 and 1550 nm are compared with analytic expressions for interface scattering and leakage loss.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(160.4760) Materials : Optical properties
(160.6030) Materials : Silica
(230.7370) Optical devices : Waveguides
(290.5880) Scattering : Scattering, rough surfaces
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(310.6860) Thin films : Thin films, optical properties

History
Original Manuscript: August 17, 2003
Revised Manuscript: December 23, 2003
Published: May 10, 2004

Citation
Douglas A. P. Bulla, Wei-Tang Li, Christine Charles, Rod Boswell, Adrian Ankiewicz, and John Love, "Deposition and characterization of silica-based films by helicon-activated reactive evaporation applied to optical waveguide fabrication," Appl. Opt. 43, 2978-2985 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-14-2978


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Durandet, R. Boswell, D. McKenzie, “New plasma-assisted deposition technique using helicon activated reactive evaporation,” Rev. Sci. Instrum. 66, 2908–2913 (1995). [CrossRef]
  2. B. Higgins, A. Durandet, R. Boswell, “Investigation of silicon transport in the neutral background of a plasma activated reactive evaporation system,” J. Vac. Sci. Technol. B 13, 192–197 (1995). [CrossRef]
  3. W. T. Li, D. A. P. Bulla, C. Charles, R. Boswell, J. Love, B. Luther-Davies, “Ge-doped SiO2 thin films produced by helicon activated reactive evaporation,” Thin Solid Films 419, 82–87 (2002). [CrossRef]
  4. W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, R. Boswell, “Hydrogen contamination in Ge-doped SiO2 thin films prepared by helicon activated reactive evaporation,” J. Vac. Sci. Technol. A 21, 792–796 (2003). [CrossRef]
  5. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26, 2621–2624 (1987). [CrossRef] [PubMed]
  6. J. J. Refi, “Optical fibers for optical networking,” Bell Lab. Tech. J. 4, 246–260 (1999). [CrossRef]
  7. K. Worhoff, P. V. Lambeck, A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication device,” J. Lightwave Technol. 17, 1401–1407 (1999). [CrossRef]
  8. R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998). [CrossRef]
  9. L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000). [CrossRef]
  10. G. G. Matlakowski, C. Charles, A. Durandet, R. W. Boswell, S. Armand, D. Bogsanyi, “Deposition of silicon dioxide films using the helicon diffusion reactor for integrated optics applications,” J. Vac. Sci. Technol. A 12, 2754–2760 (1994). [CrossRef]
  11. C. A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment,” Thin Solid Films 226, 30–34 (1993). [CrossRef]
  12. C. Charles, R. W. Boswell, “Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma,” J. Appl. Phys. 84, 350–354 (1998). [CrossRef]
  13. Slab 4.0.09, commercial product of BBV Software BV, Enschede, The Netherlands.
  14. J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990). [CrossRef]
  15. S. C. Deshmukh, E. S. Aydil, “Investigation of SiO2 plasma enhanced chemical vapor deposition through tetraethoxysilane using attenuated total reflection Fourier transform infrared spectroscopy,” J. Vac. Sci. Technol. A 13, 2355–2367 (1995). [CrossRef]
  16. C. Vallee, A. Goullet, A. Grinier, “Direct observation of water incorporation in PECVD SiO2 films by UV-visible ellipsometry,” Thin Solid Films 311, 212–217 (1997). [CrossRef]
  17. T. Kamal, D. W. Hess, “Enhancement of isopropanol-based photoresist removal by the addition of aqueous alkaline solutions,” J. Vac. Sci. Technol. B 19, 461–466 (2001). [CrossRef]
  18. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1985).
  19. F. Ladouceur, J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman Hall, London, 1996).
  20. C. Tosello, F. Rossi, S. Ronchin, R. Rolli, G. C. Righini, F. Pozzi, S. Pelli, M. Fossi, E. Moser, M. Montagna, M. Ferrari, C. Duverger, A. Chiappini, C. De Bernardi, “Erbium-activated silica-titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering,” J. Non-Cryst. Solids 284, 230–236 (2001). [CrossRef]
  21. R. J. Deri, R. J. Hawkins, E. Kapon, “Rib profile effects on scattering in semiconductor optical waveguides,” Appl. Phys. Lett. 53, 1483–1485 (1988). [CrossRef]
  22. C. Gorecki, “Optimization of plasma-deposited silicon oxynitride films for optical channel waveguides,” Opt. Lasers Eng. 33, 15–20 (2000). [CrossRef]
  23. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  24. C. Charles, “Wall effects on the chemistry in a pulsed oxygen/silane radio frequency helicon plasma,” J. Phys. D 36, 2076–2082 (2003). [CrossRef]
  25. W. Stutius, W. Streifer, “Silicon nitride films on silicon for optical waveguides,” Appl. Opt. 16, 3218–3222 (1977). [CrossRef] [PubMed]
  26. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). [CrossRef] [PubMed]
  27. R. J. Deri, E. Kapon, L. M. Schiavone, “Scattering in low-loss GaAs/AlGaAs rib waveguides,” Appl. Phys. Lett. 51, 789–791 (1987). [CrossRef]
  28. D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto, “Design and fabrication of SiO2/Si3N4 optical waveguides,” IEEE Trans. Microwave Theory. Tech. 50, 9–12 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited