OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3010–3017

Phase noise and phase modulation in optical coherence tomography

Pascale Parrein and Joachim Meier  »View Author Affiliations


Applied Optics, Vol. 43, Issue 15, pp. 3010-3017 (2004)
http://dx.doi.org/10.1364/AO.43.003010


View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The signal in optical coherence tomography is often modulated either in phase or by use of the Doppler modulation generated by a depth-scanning mechanism. The effect of each type of modulation on the signal’s amplitude is evaluated. The advantages of each type of modulation in terms of immunity to phase noise and penetration depth are discussed in relation to two envelope detection schemes, i.e., lock-in detection and rms-to-dc conversion. Phase noise due to drifts and demodulation instabilities causes distortion of the signal envelope and can be responsible in part for the speckle appearance of the image.

© 2004 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(060.5060) Fiber optics and optical communications : Phase modulation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

History
Original Manuscript: September 11, 2003
Revised Manuscript: January 20, 2004
Published: May 20, 2004

Citation
Pascale Parrein and Joachim Meier, "Phase noise and phase modulation in optical coherence tomography," Appl. Opt. 43, 3010-3017 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-15-3010


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–98 (1990). [CrossRef]
  2. W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992). [CrossRef]
  3. A. Gh. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–182 (2000). [CrossRef]
  4. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998). [CrossRef]
  5. A. M. Rollins, J. A. Izatt, “Optimal interferometer design for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999). [CrossRef]
  6. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org. [CrossRef] [PubMed]
  7. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, J. G. Fujimoto, “Rapid acquisition of in vivo biological coherence tomography,” Opt. Lett. 21, 1408–1410 (1996). [CrossRef] [PubMed]
  8. M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000). [CrossRef]
  9. A. G. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998). [CrossRef]
  10. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, “An optical coherence microscope for 3D imaging in developmental biology,” Opt. Express 6, 136–146 (2000), http://www.opticsexpress.org . [CrossRef] [PubMed]
  11. J. F. de Boer, C. E. Saxer, J. S. Nelson, “Stable carrier generation and phase resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, 5787–5790 (2001). [CrossRef]
  12. A. G. Podoleanu, J. A. Rogers, R. A. Cucu, D. A. Jackson, B. Wacogne, H. Porte, T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun. 191, 21–30 (2001). [CrossRef]
  13. J. Minkoff, Signals, Noise and Active Sensors (Wiley, New York, 1992).
  14. O. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993). [CrossRef] [PubMed]
  15. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996). [CrossRef]
  16. J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography: an overview,” in Saratov Fall Meeting ’98: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, V. P. Ryabukho, D. A. Zimnyakov, eds., Proc. SPIE3726, 450–561 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited