OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3066–3072

Excitation-emission fluorimeter based on linear interference filters

Michael Gouzman, Nadia Lifshitz, Serge Luryi, Oleg Semyonov, Dmitry Gavrilov, and Vyacheslav Kuzminskiy  »View Author Affiliations


Applied Optics, Vol. 43, Issue 15, pp. 3066-3072 (2004)
http://dx.doi.org/10.1364/AO.43.003066


View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the design, properties, and performance of an excitation-emission (EE) fluorimeter that enables spectral characterization of an object simultaneously with respect to both its excitation and its emission properties. Such devices require two wavelength-selecting elements, one in the optical path of the excitation broadband light to obtain tunable excitation and the other to analyze the resulting fluorescence. Existing EE instruments are usually implemented with two monochromators. The key feature of our EE fluorimeter is that it employs lightweight and compact linear interference filters (LIFs) as the wavelength-selection elements. The spectral tuning of both the excitation and the detection LIFs is achieved by their mechanical shift relative to each other by use of two computer-controlled linear step motors. The performance of the LIF-based EE fluorimeter is demonstrated with the fluorescent spectra of various dyes and their mixtures.

© 2004 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6190) Spectroscopy : Spectrometers
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

History
Original Manuscript: October 22, 2003
Revised Manuscript: February 26, 2004
Published: May 20, 2004

Citation
Michael Gouzman, Nadia Lifshitz, Serge Luryi, Oleg Semyonov, Dmitry Gavrilov, and Vyacheslav Kuzminskiy, "Excitation-emission fluorimeter based on linear interference filters," Appl. Opt. 43, 3066-3072 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-15-3066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. M. Warner, G. D. Christian, E. R. Davidson, “Analysis of multicomponent fluorescence data,” Anal. Chem. 49, 564–573 (1977). [CrossRef]
  2. P. R. Rava, R. Richards-Kortum, M. S. Feld, J. J. Baraga, “Contour mapping of spectral diagnostics,” U.S. patent5,345,941 (13April1993).
  3. K. J. Albert, D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Anal. Chem. 72, 1947–1955 (2000). [CrossRef] [PubMed]
  4. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, R. R. Richards-Kortum, “Fluorescence excitation-emission matrices of human tissues: a system for in vivo measurements and method of data analysis,” Appl. Spectrosc. 53, 302–311 (1999). [CrossRef]
  5. A. R. Muroski, K. S. Booksh, M. L. Myrick, “Single measurement excitation emission matrix spectrofluometer for determination of hydrocarbons in ocean water,” Anal. Chem. 68, 3534–3538 (1996). [CrossRef]
  6. R. D. Jiji, G. A. Cooper, K. S. Booksh, “Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic and aromatic hydrocarbons,” Anal. Chim. Acta 397, 61–72 (1999). [CrossRef]
  7. SPEX-3D from Jobin-Yvon, information available at http://www.jobinyvon.co.uk/jy/fluorescence/fluorescence.htm# .
  8. R. Richard-Kortum, L. Tong, M. S. Feld, “Spectral diagnosis of diseased tissue,” U.S. patent5,421,337 (6June1995).
  9. R. A. Zangaro, L. Silveira, R. Manochoran, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, M. S. Feld, “Rapid multiexcitation fluorescent spectroscopy for in vivo tissue diagnostics,” Appl. Opt. 35, 5211–5219 (1996). [CrossRef]
  10. J. E. Kenny, “Laser fluorescence EEM probe for cone penetrometer pollution analysis,” EPA/600/R-99/041 (U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., 1999).
  11. C. Kieleck, B. Bousquet, G. Le Brun, J. Cariou, J. Lotrian, “Laser induced fluorescent imaging: application to groups of macroalgae identification,” J. Phys. B 34, 2561–2571 (2001).
  12. S. J. Hart, R. D. Jiji, “Light emitting diode excitation emission matrix fluorescence spectroscopy,” Analyst 127, 1693–1699 (2002). [CrossRef]
  13. C. D. Tran, R. J. Furlan, “Spectrofluorometer based on acousto-optics tunable filter for rapid scanning of multicomponent sample analysis,” Anal. Chem. 65, 1675–1681 (1993). [CrossRef] [PubMed]
  14. J. Romier, J. Selves, J. Gastellu-Etchegorry, “Imaging spectrometer based on acousto-optics tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998). [CrossRef]
  15. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74, 2021–2028 (2002). [CrossRef] [PubMed]
  16. H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy—acoustooptic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994). [CrossRef]
  17. S. D. Russell, R. L. Shimabukuro, A. D. Ramirez, M. G. Lovern, “Surface plasmon tunable filter for multiband spectral imaging,” in SPAWAR Systems Center Biennial Review (Space and Naval Warfare Systems Center, San Diego, Calif., 2001), pp. 117–121.
  18. P. A. Jansson, ed., Deconvolution with Applications in Spectroscopy (Academic, New York, 1984), p. 342.
  19. See calculations of the throughput of a monochromator, Oriel manual (Oriel Instruments, Stratford, Conn., 2003), pp. 4–13.
  20. A. P. Larson, H. Ahlberg, S. Folestad, “Semiconductor laser-induced fluorescence detection in picoliter volume flow cells,” Appl. Opt. 32, 794–805 (1993). [CrossRef] [PubMed]
  21. C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, C. P. G. Vallbhan, “Solvent effect on absolute fluorescence quantum yield of Rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–574 (1999). [CrossRef]
  22. DNA Technology Technical Bulletin, “Fluorescence excitation and emission,” www.idtdna.com/program/techbulletins/Fluorescent_Dye_Labeled_Oligonucleotides.asp .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited