OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3085–3096

Generation of Nanosized Optical Beams by Use of Butted Gratings with Small Numbers of Periods

Shin-ya Hasegawa and Fumihiro Tawa  »View Author Affiliations


Applied Optics, Vol. 43, Issue 15, pp. 3085-3096 (2004)
http://dx.doi.org/10.1364/AO.43.003085


View Full Text Article

Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have devised an optical high-throughput nanosized beam-generating structure consisting of butted gratings with small numbers of periods. We analyzed the structure of these grating by the transverse resonance method. We then demonstrated that it is possible to achieve a beam spot of 45 nm × 60 nm (FWHM) with this structure for the optical heads used in ultrahigh-density recording, such as those used in laser-assisted magnetic recording storage.

© 2004 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.3810) Optical data storage : Magneto-optic systems
(230.0230) Optical devices : Optical devices
(230.1950) Optical devices : Diffraction gratings

Citation
Shin-ya Hasegawa and Fumihiro Tawa, "Generation of Nanosized Optical Beams by Use of Butted Gratings with Small Numbers of Periods," Appl. Opt. 43, 3085-3096 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-15-3085


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Ohtsu, ed., Progress in Nano-electro-optics I (Springer-Verlag, Berlin, 2002).
  2. U. C. Fischer, “The tetrahedral tip as a probe for scanning near-field optical microscopy,” in Near Field Optics, D. W. Pohl and D. Courjon, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 255–262.
  3. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
  4. T. Matsumoto, T. Shimano, and S. Hosaka, “An efficient probe with a planar metallic pattern for high-density near field optical memory,” in Technical Digest of 6th International Conference on Near Field Optics and Related Techniques (University of Twente, Enschede, The Netherlands, 2000), p. 55.
  5. T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, “Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology,” Appl. Phys. Lett. 4, 2257–2259 (2002).
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
  7. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
  8. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
  9. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
  10. J. Yamakita and K. Rokushima, “Modal expansion method for dielectric gratings with rectangular grooves,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena 2, J. M. Lerner, ed., Proc. SPIE 503, 239–243 (1984).
  11. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  12. Poynting is a licensed commercial FDTD program from Fujitsu Limited, Japan.
  13. S.-T. Peng and A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. 1. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981).
  14. H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys. 38, 1839–1840 (1999).
  15. H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, and K. Ohta, “New magnetic recording method using laser assisted read/write technologies,” proceedings of Magneto-Optical Recording International Symposium J. Magn. Soc. Jpn. 23, Suppl. S1, 233–236(1999).
  16. M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, and D. Chen, “Characteristics of thermally assisted magnetic recording,” IEEE Trans. Magn. 37, 1244–1249 (2001).
  17. J. M. Guerra, “Photon tunneling microscopy,” Appl. Opt. 29, 3741–3752 (1990).
  18. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
  19. S. Hasegawa, N. Aoyama, A. Futamata, and T. Uchiyama, “Optical tunneling effect calculation of a solid immersion lens for use in optical disk memory,” Appl. Opt. 38, 2297–2300 (1999).
  20. T. Rausch, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, “Near field hybrid recording with a mode index waveguide lens,” in Optical Data Storage 2000, D. G. Stinson and R. Katayama, eds., Proc. SPIE 4090, 66–71 (2000).
  21. J. Fujikata, T. Ishi, H. Yokota, R. J. Mizuno, K. Suzuki, M. Yanagisawa, and K. Ohashi, “Near field optical head with a surface plasmon resonance structure,” in Technical Digest of Optics Japan (Optical Society of Japan, Tokyo, 2002), paper 3pA6 (in Japanese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited