OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3110–3121

Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor

Janet L. Machol, Tom Ayers, Karl T. Schwenz, Keith W. Koenig, R. Michael Hardesty, Christoph J. Senff, Michael A. Krainak, James B. Abshire, Hector E. Bravo, and Scott P. Sandberg  »View Author Affiliations


Applied Optics, Vol. 43, Issue 15, pp. 3110-3121 (2004)
http://dx.doi.org/10.1364/AO.43.003110


View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and preliminary tests of an automated differential absorption lidar (DIAL) that profiles water vapor in the lower troposphere are presented. The instrument, named CODI (for compact DIAL), has been developed to be eye safe, low cost, weatherproof, and portable. The lidar design and its unattended operation are described. Nighttime intercomparisons with in situ sensors and a radiosonde are shown. Desired improvements to the lidar, including a more powerful laser, are also discussed.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere
(140.2020) Lasers and laser optics : Diode lasers
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: July 2, 2003
Revised Manuscript: December 17, 2004
Published: May 20, 2004

Citation
Janet L. Machol, Tom Ayers, Karl T. Schwenz, Keith W. Koenig, R. Michael Hardesty, Christoph J. Senff, Michael A. Krainak, James B. Abshire, Hector E. Bravo, and Scott P. Sandberg, "Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor," Appl. Opt. 43, 3110-3121 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-15-3110


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Dabberdt, T. W. Schlatter, “Research opportunities from emerging atmospheric observing and modeling capabilities,” Bull. Am. Meteor. Soc. 77, 305–323 (1996). [CrossRef]
  2. T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR-NOAA lower-tropospheric water vapor workshop,” Bull. Am. Meteor. Soc. 80, 2339–2357 (1999). [CrossRef]
  3. B. Moninger, R. Mamrosh, P. Pauley, “Automated meteorological reports from commercial aircraft,” Bull. Am. Meteor. Soc. 84, 203–216 (2003). [CrossRef]
  4. R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (University of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  5. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  6. R. H. Ware, C. Alber, C. Rocken, F. Solheim, “Sensing integrated water vapor along GPS ray paths,” Geophys. Res. Lett. 24, 417–420 (1997). [CrossRef]
  7. K. Hirahara, “Local GPS tropospheric tomography,” Earth Planets Space 52, 935–939 (2000).
  8. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  9. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3860 (1998). [CrossRef]
  10. D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, J. Pelon, “The airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3475 (2001). [CrossRef]
  11. S. Ismail, E. V. Browell, R. A. Ferrare, S. A. Kooi, M. B. Clayton, V. G. Brackett, P. B. Russell, “LASE measurements of aerosol and water vapor profiles during TARFOX,” J. Geophys. Res. 105, 9903–9916 (2000). [CrossRef]
  12. G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993). [CrossRef] [PubMed]
  13. J. A. R. Rall, J. B. Abshire, D. Reusser, M. Humphrey, “Measurements of atmospheric water vapor using a compact AlGaAs laser based DIAL instrument,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 196.
  14. L. M. Little, G. C. Papen, “Fiber-based lidar for atmospheric water-vapor measurements,” Appl. Opt. 40, 3417–3427 (2001). [CrossRef]
  15. J. M. Duan, M. Bevis, P. Fang, Y. Bock, S. R. Chiswell, S. Businger, C. Rocken, F. Soldheim, R. H. Ware, T. A. Hering, R. W. King, “Remote sensing of atmospheric water vapor using the Global Positioning System,” J. Appl. Meteor. 35, 830–838 (1996). [CrossRef]
  16. R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, New York, 1976), pp. 71–151. [CrossRef]
  17. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteor. 13, 71–77 (1974). [CrossRef]
  18. J. Boesenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  19. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  20. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, UK, 1983).
  21. S. L. Hess, Introduction to Theoretical Meteorology (Holt, Rinehart Winston, New York, 1959).
  22. E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991). [CrossRef] [PubMed]
  23. J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978). [CrossRef] [PubMed]
  24. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978). [CrossRef] [PubMed]
  25. E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the space shuttle,” Appl. Opt. 17, 624–630 (1978). [CrossRef] [PubMed]
  26. R. R. Rogers, A Short Course in Cloud Physics (Pergamon, New York, 1983).
  27. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996). [CrossRef]
  28. D. F. Welch, “A brief history of high-power semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000). [CrossRef]
  29. N. A. Morris, J. C. Connolly, R. U. Martinelli, J. H. Abeles, A. L. Cook, “Single mode distributed feedback 761 nm GaAs-AlGaAs quantum-well laser,” IEEE Photon. Technol. Lett. 7, 455–457 (1995). [CrossRef]
  30. SDL-8630 Tunable Laser Diode Operator’s Manual (SDL, Inc., San Jose, Calif., 1996).
  31. American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000 (Laser Institute of America, Orlando, Fla., 2000).
  32. D. H. Lenshow, V. Wulfmeyer, C. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Oceanic Technol. 17, 1330–1347 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited