OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3122–3132

Optical influence of ship wakes

Xiaodong Zhang, Marlon Lewis, W. Paul Bissett, Bruce Johnson, and Dave Kohler  »View Author Affiliations


Applied Optics, Vol. 43, Issue 15, pp. 3122-3132 (2004)
http://dx.doi.org/10.1364/AO.43.003122


View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical variations observed within ship wakes are largely due to the generation of copious amounts of air bubbles in the upper ocean, a fraction of which accumulate as foam at the surface, where they release scavenged surfactants. Field experiments were conducted to test previous theoretical predictions of the variations in optical properties that result from bubble injection in the surface ocean. Variations in remote-sensing reflectance and size distribution of bubbles within the ship-wake zone were determined in three different optical water types: the clear equatorial Pacific Ocean, moderately turbid coastal waters, and very turbid coastal waters, the latter two of which were offshore of New Jersey. Bubbles introduced by moving vessels increased the backscattering in all cases, which in turn enhanced the reflectance over the entire visible and infrared wave bands. The elevated reflectance had different spectral characteristics in the three locations. The color of ship wakes appears greener in the open ocean, whereas little change in color was observed in near-coastal turbid waters, consistent with predictions. Colorless themselves, bubbles increase the reflected radiance and change the color of the ocean in a way that depends on the spectral backscattering and absorption of the undisturbed background waters. For remote observation from aircraft or satellite, the foam and added surfactants further enhance the reflectance to a degree dependent on the illumination and the viewing geometry.

© 2004 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.1350) Scattering : Backscattering

History
Original Manuscript: September 5, 2003
Revised Manuscript: February 24, 2004
Published: May 20, 2004

Citation
Xiaodong Zhang, Marlon Lewis, W. Paul Bissett, Bruce Johnson, and Dave Kohler, "Optical influence of ship wakes," Appl. Opt. 43, 3122-3132 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-15-3122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Debnath, Nonlinear Water Waves (Academic, Boston, 1994), p. 544.
  2. J. D. Lyden, R. R. Hammond, D. R. Lyzenga, R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93(C10), 12293–12303 (1988). [CrossRef]
  3. R. D. Peltzer, O. M. Griffin, W. R. Barger, J. A. C. Kaiser, “High-resolution measurement of surface-active film redistribution in ship wakes,” J. Geophys. Res. 97(C4), 5231–5252 (1992). [CrossRef]
  4. A. M. Reed, R. F. Beck, O. M. Griffin, R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990).
  5. J. D. McGlynn, S. R. Stewart, D. J. Witte, “Advances in sensing and detection of thermal infrared ship wakes,” presented at Oceans’ 90: Engineering in the Ocean Environment, Washington D.C., 1990, 24–26 September 1990. [CrossRef]
  6. W. H. Munk, P. Scully-Power, F. Zachariasen, “Ships from space,” Proc. R. Soc. London Ser. A 412, 231–254 (1987). [CrossRef]
  7. X. Zhang, M. R. Lewis, B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998). [CrossRef]
  8. D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 704–710 (1994). [CrossRef]
  9. D. Stramski, J. Tegowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001). [CrossRef]
  10. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  11. J. T. Tate, L. J. Spitzer, eds., Physics of Sound in the Sea: Summary Technical Report of Division 6 (U.S. Government Printing Office, Washington D.C., 1946), p. 566.
  12. M. V. Trevorrow, S. Vagle, D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994). [CrossRef]
  13. L. Shen, C. Zhang, D. K. P. Yue, “Free-surface turbulent wake behind towed ship models: Experimental measurements, stability analyses and direct numerical simulations,” J. Fluid Mech. 469, 89–120 (2002). [CrossRef]
  14. A. B. Ezerskii, B. M. Sandler, D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).
  15. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001). [CrossRef]
  16. A. Morel, J. L. Mueller, “Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, J. L. Mueller, G. S. Fargion, eds. (National Aeronautics and Space Administration, Greenbelt, Md., 2002), Revision 3, Vol. 2, p. 308.
  17. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  18. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: Its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  19. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  20. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  21. X. Zhang, “Influence of bubbles on the water-leaving reflectance,” Ph.D. thesis (Dalhousie University, Halifax, Nova Scotia, Canada, 2001).
  22. “LEO-15 Longterm Ecosystem Observatory” (Rutgers University, New Brunswick, N.J., 2001), retrieved March2001, http://marine.rutgers.edu/mrs/LEO15.html .
  23. R. W. Austin, T. L. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256. [CrossRef]
  24. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988). [CrossRef]
  25. B. D. Johnson, R. C. Cooke, “Bubble populations and spectra in coastal waters. A photographic approach,” J. Geophys. Res. 84, 3761–3766 (1979). [CrossRef]
  26. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden, “MODTRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998). [CrossRef]
  27. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997). [CrossRef]
  28. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994), p. 592.
  29. A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991). [CrossRef]
  30. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Springer-Verlag Lecture Notes on Coastal and Estuarine Studies Series (Springer-Verlag, New York, 1983), p. 114.
  31. T. J. Petzold, “Volume scattering function for selected ocean waters,” SIO Ref. 72–78 (Scripps Institute of Oceanography, La Jolla, Calif., 1972).
  32. M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983). [CrossRef]
  33. X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002). [CrossRef]
  34. C. Garrett, M. Li, D. M. Farmer, “The connection between bubble size spectra and energy dissipation rates in the upper ocean,” J. Phys. Oceanogr. 30, 2163–2171 (2000). [CrossRef]
  35. M. Y. Su, S. C. Ling, J. Cartmill, “Optical microbubble measurements in the North Sea,” in Sea Surface Sound, B. R. Kerman, ed. (Kluwer Academic, New York, 1988), pp. 211–223. [CrossRef]
  36. E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001). [CrossRef]
  37. D. J. Bogucki, J. A. Domaradzki, D. Stramski, J. R. V. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt. 37, 4669–4677 (1998). [CrossRef]
  38. R. Frouin, M. Schwindling, P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996). [CrossRef]
  39. H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993). [CrossRef] [PubMed]
  40. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999). [CrossRef]
  41. M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980). [CrossRef]
  42. C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  43. C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982). [CrossRef]
  44. P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23, 1816–1824 (1984). [CrossRef] [PubMed]
  45. K. D. Moore, K. J. Voss, H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000). [CrossRef]
  46. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited