OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3171–3173

Tunability of a 946-nm Nd:YAG microchip laser by use of a double-cavity configuration

Hiroshi Hara, Brian M. Walsh, and Norman P. Barnes  »View Author Affiliations

Applied Optics, Vol. 43, Issue 15, pp. 3171-3173 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (70 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observed the tunability of a 946-nm Nd:YAG microchip laser by using a double-cavity configuration. We shifted the lasers wavelength from 938 to 946 nm by changing the thickness of the air gap. In addition, differences in reflectivity of the output mirror yielded the tunable range of the 946-nm band, with the center oscillation wavelength maintained at 946.1 nm.

© 2004 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3600) Lasers and laser optics : Lasers, tunable

Original Manuscript: September 13, 2003
Revised Manuscript: February 12, 2004
Published: May 20, 2004

Hiroshi Hara, Brian M. Walsh, and Norman P. Barnes, "Tunability of a 946-nm Nd:YAG microchip laser by use of a double-cavity configuration," Appl. Opt. 43, 3171-3173 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Poberaj, A. Assion, A. Fix, C. Kiemle, M. Wirth, G. Ehret, Advances in Laser Remote Sensing, selected papers presented at the 20th International Laser Radar Conference (American Geophysical Union, Washington, D.C., 2000), p. 325.
  2. M. Bode, I. Freite, A. Tunnermann, H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 22, 1220–1222 (1997). [CrossRef] [PubMed]
  3. T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm: YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998). [CrossRef]
  4. J. Izawa, N. Nakajima, H. Hara, Y. Arimoto, “Comparison of lasing performance of Tm,Ho:YLF lasers by use of single and double cavities,” Appl. Opt. 39, 2418–2421 (2000). [CrossRef]
  5. W. Kochner, “Laser diodes,” in Solid State Laser Engineering, W. Koechner, ed., Vol. 1. of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1988), Chap. 6.1.4, p. 274.
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif.1986), p. 527.
  7. Ref. 6, p. 419.
  8. S. Singh, R. G. Smith, L. G. Van Vitent, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd+3 in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974). [CrossRef]
  9. R. Koch, W. A. Clarkson, D. C. Hanna, “Diode pumped cw Nd:YAG laser operating at 938.5 nm,” Electron. Lett. 32, 553–554 (1996). [CrossRef]
  10. T. Kellner, F. Heine, G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, -BaB2O4, and LiB3O5,” Appl. Phys. B 65, 789–792 (1997). [CrossRef]
  11. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-m laser,” J. Opt. Soc. Am. B. 15, 2794–2801 (1998). [CrossRef]
  12. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm,” Opt. Commun. 194, 207–211 (2001). [CrossRef]
  13. N. P. Barnes, B. M. Walsh, R. L. Hutcheson, R. W. Ewuall, “Pulsed4F3/2 to 4I9/2 operation of Nd losers,” J. Opt. Soc. Am. B 16, 2169–2177 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited