OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3174–3177

Unidirectional Single-Frequency Operation of a Nd:YVO4 Ring Laser With and Without a Faraday Element

Benjamin A. Thompson, Ara Minassian, and Michael J. Damzen  »View Author Affiliations

Applied Optics, Vol. 43, Issue 15, pp. 3174-3177 (2004)

View Full Text Article

Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate high-performance unidirectional and single-frequency ring-laser operation based on a diode-side-pumped Nd:YVO4 bounce amplifier, obtained in a ring system both with and without a Faraday rotating element. Ring-laser operation with intracavity Faraday unidirectional element produces 15-W cw output in a TEM00 and single-longitudinal mode with beam propagation parameter M2 < 1.1 with 35-W diode pumping. A novel non-Faraday-based ring laser uses a polarization-dependent output coupler and asymmetric polarization state in the birefringent Nd:YVO4 gain medium and is demonstrated to produce highly unidirectional (1200:1) single-frequency output of 14 W in a TEM00 mode with beam propagation factor M2 < 1.2 at 30 W of diode pumping.

© 2004 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3560) Lasers and laser optics : Lasers, ring
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3580) Lasers and laser optics : Lasers, solid-state

Benjamin A. Thompson, Ara Minassian, and Michael J. Damzen, "Unidirectional Single-Frequency Operation of a Nd:YVO4 Ring Laser With and Without a Faraday Element," Appl. Opt. 43, 3174-3177 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. L. Tang, H. Statz, and G. A. de Mars, “Spectral output and spiking behaviour of solid-state lasers,” Phys. Rev. 34, 2289–2295 (1963).
  2. M. Tröbs and T. Graf, “Compact, dual-configuration, single-frequency, Q-switched Nd:YAG laser,” Opt. Commun. 187, 385–388 (2001).
  3. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
  4. W. R. Trutna, D. K. Donald, and M. Nazarathy, “Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic-field,” Opt. Lett. 12, 248–250 (1987).
  5. W. A. Clarkson and D. C. Hanna, “Acoustooptically induced unidirectional single-mode operation of a Q-switched miniature Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
  6. W. A. Clarkson, A. B. Neilson, and D. C. Hanna, “Unidirectional operation of ring lasers via the acoustooptic effect,” IEEE J. Quantum Electron. 32, 311–325 (1996).
  7. R. Roy, P. A. Schulz, and A. Walther, “Acoustooptic modulator as an electronically selectable unidirectional device in a ring laser,” Opt. Lett. 12, 672–674 (1987).
  8. J. Neev and F. V. Kowalski, “Unidirectional device for a ring laser using an acoustooptic modulator,” Opt. Lett. 13, 375–377 (1988).
  9. D. Slavov, M. Deneva, E. Stoykova, M. Nenchev, R. Barbe, and J. C. Keller, “Output control of a ring laser using bi-directional injection: a new approach for unidirectional pulse generation at a reference atomic absorption line,” Opt. Commun. 157, 343–351 (1998).
  10. M. A. Deneva, M. N. Nenchev, R. Barbe, and J. C. Keller, “Unidirectional ring Ti3+:Al2O3 laser generation at the wavelength of an atomic absorption line by bidirectional passive self-injection locking,” Appl. Phys. Lett. 76, 131–133 (2000).
  11. Y. Shi, M. Sejka, and O. Poulsen, “A unidirectional Er3+-doped fiber ring laser without isolator,” IEEE Photonic Tech. Lett. 7, 290–292 (1995).
  12. E. Stoykova and M. Nenchev, “Strong optical asymmetry of an interference wedge with unequal-reflectivity mirrors and its use in unidirectional ring laser designs,” Opt. Lett. 19, 1925–1927 (1994).
  13. A. A. Betin, K. V. Ergakov, and O. V. Mitropolsky, “The possibility of unidirectional generation in a ring laser without nonreciprocal elements,” Opt. Commun. 86, 491–496 (1991).
  14. J. E. Bernard, E. Mccullough, and A. J. Alcock, “High-gain, diode-pumped Nd:YVO4 slab amplifier,” Opt. Commun. 109, 109–114 (1994).
  15. M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
  16. A. Minassian, B. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003).
  17. B. H. T. Chai, G. Loutts, J. Lefaucheur, and X. X. Zhang, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F and Sr5(VO4)3F,” in Advanced Solid State Lasers, T. Y. Fan and B. Chai, eds., Vol. 20 of OSA Proceedings Series(Optical Society of America, Washington, D.C., 1994), pp. 41–52.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited