OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3191–3198

Distortions of the extinction coefficient profile caused by systematic errors in lidar data

Vladimir A. Kovalev  »View Author Affiliations


Applied Optics, Vol. 43, Issue 15, pp. 3191-3198 (2004)
http://dx.doi.org/10.1364/AO.43.003191


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of lidar data systematic errors on the retrieved particulate extinction coefficient profile in clear atmospheres is investigated. Particularly, two sources of the extinction coefficient profile distortions are analyzed: (1) a zero-line offset remaining after subtraction of an inaccurately determined signal background component and (2) a far-end incomplete overlap due to poor adjustment of the lidar system optics. Inversion results for simulated lidar signals, obtained with the near- and far-end solutions, are presented that show advantages of the near-end solution for clear atmospheres.

© 2004 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.2200) Scattering : Extinction

History
Original Manuscript: August 26, 2003
Revised Manuscript: February 4, 2004
Published: May 20, 2004

Citation
Vladimir A. Kovalev, "Distortions of the extinction coefficient profile caused by systematic errors in lidar data," Appl. Opt. 43, 3191-3198 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-15-3191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984), pp. 256–259.
  2. V. A. Kovalev, H. Moosmüller, “Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere,” Appl. Opt. 33, 6499–6507 (1994). [CrossRef] [PubMed]
  3. Y. Sasano, H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23, 11–13 (1984). [CrossRef]
  4. Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985). [CrossRef] [PubMed]
  5. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986). [CrossRef] [PubMed]
  6. G. J. Kunz, G. Leeuw, “Inversion of lidar signals with the slope method,” Appl. Opt. 32, 3249–3256 (1993). [CrossRef] [PubMed]
  7. G. J. Kunz, “Transmission as an input boundary value for an analytical solution of a single-scatter lidar equation,” Appl. Opt. 35, 3255–3260 (1996). [CrossRef] [PubMed]
  8. E. Durieux, L. Fiorani, “Measurement of the lidar signal fluctuations with a shot-per-shot instrument,” Appl. Opt. 37, 7128–7131 (1998). [CrossRef]
  9. F. Rocadenbosch, A. Comeron, D. Pineda, “Assessment of lidar inversion errors for homogeneous atmospheres,” Appl. Opt. 37, 2199–2206 (1998). [CrossRef]
  10. D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999). [CrossRef]
  11. R. R. Agishev, A. Comeron, “Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications,” Appl. Opt. 41, 7516–7521 (2002). [CrossRef]
  12. H. Shimizu, Y. Sasano, H. Nakane, N. Sugimoto, I. Matsui, N. Takeuchi, “Large-scale laser radar for measuring aerosol distribution over a wide area,” Appl. Opt. 24, 617–626 (1985). [CrossRef]
  13. Y. Zhao, “Signal-induced fluorescence in photomultipliers in differential absorption lidar systems,” Appl. Opt. 38, 4639–4648 (1999). [CrossRef]
  14. J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994). [CrossRef] [PubMed]
  15. H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990). [CrossRef] [PubMed]
  16. L. Florani, B. Calpini, L. Jaquet, H. V. den Bergh, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997). [CrossRef]
  17. M. Bristow, “Suppression of afterpulsing in photomultipliers by gating the photocathode,” Appl. Opt. 41, 4975–4987 (2002). [CrossRef] [PubMed]
  18. W. H. Hunt, S. K. Poultney, “Testing the linearity of response of gated photomultipliers in wide dynamic range laser radar systems,” IEEE Trans. Nucl. Sci. NS-22, 116–120 (1975). [CrossRef]
  19. V. E. Zuev, G. M. Krekov, Optical Models of the Atmosphere, V. E. Zuev, ed. (Gidrometeoizdat, Leningrad, 1986), Chap. 5, p. 145 (in Russian).
  20. J. Spinhirne, “Monitoring of tropospheric aerosol optical properties by lidar,” in Atmospheric Aerosols: Their Optical Properties and Effects, NASA CP-2004 (NASA, Washington, D.C., 1976).
  21. M. Pahlow, Environmental Technology Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway Boulder, Colo. 80305 (personal communication, 2002).
  22. Y. Sasano, H. Shimizu, N. Takeuchi, M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908–3910 (1979). [CrossRef] [PubMed]
  23. K. Sassen, G. C. Dodd, “Lidar crossover function and misalignment effects,” Appl. Opt. 21, 3162–3165 (1982). [CrossRef] [PubMed]
  24. V. M. Ignatenko, “Experimental determination of the lidar geometrical function,” in Proceedings of the Main Geophysical Observatory, G. P. Gushchin, ed. (Main Geophysical Observatory, Leningrad, 1991), No. 487, pp. 91–95 (in Russian).
  25. K. Tomine, C. Hirayama, K. Michimoto, N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28, 2194–2195 (1989). [CrossRef] [PubMed]
  26. S. W. Dho, Y. J. Park, H. J. Kong, “Experimental determination of the geometric form factor in the lidar equation for inhomogeneous atmosphere,” Appl. Opt. 36, 6009–6010 (1997). [CrossRef] [PubMed]
  27. R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, N. Spinelli, “Analysis of the receiver response in lidar measurements,” Appl. Opt. 37, 6999–7007 (1998). [CrossRef]
  28. U. Wandinger, A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited