OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 16 — Jun. 1, 2004
  • pp: 3258–3262

Fabrication and analysis of a Fabry-Perot cavity with a micromechanical wet-etching process

Min Xiang, Yan Min Cai, Ya Ming Wu, Jian Yi Yang, and Yue Lin Wang  »View Author Affiliations

Applied Optics, Vol. 43, Issue 16, pp. 3258-3262 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel low-cost and batch fabrication method to fabricate a Fabry-Perot (FP) cavity with a micromechanical wet-etching process, through which FP cavities can be achieved with a cavity length of from several micrometers to tens of micrometers. The parallelism of mirror elements can be well achieved without electrostatic control. The quality of an etched surface can be greatly improved by the oxidation polish process. FP cavities with a finesse of approximately 50 are achieved. Analysis shows that the effective finesse is dominated mainly by the quality of the etched surface.

© 2004 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.4040) Optical devices : Mirrors
(240.5450) Optics at surfaces : Polishing

Original Manuscript: November 25, 2003
Revised Manuscript: February 18, 2004
Published: June 1, 2004

Min Xiang, Yan Min Cai, Ya Ming Wu, Jian Yi Yang, and Yue Lin Wang, "Fabrication and analysis of a Fabry-Perot cavity with a micromechanical wet-etching process," Appl. Opt. 43, 3258-3262 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Hernandez, “A high luminosity spectrometer for night airglow studies,” Appl. Opt. 9, 1225–1227 (1970). [CrossRef] [PubMed]
  2. P. B. Hays, R. G. Roble, “A technique for recovering Doppler line profiles from Fabry-Perot interferometer fringes of very low intensity,” Appl. Opt. 10, 193–200 (1971). [CrossRef] [PubMed]
  3. H. F. Döbele, J. H. Massig, “Application of a Fabry-Perot spectrometer to the measurement of spectral line shifts much smaller than line width,” Appl. Opt. 15, 69–72 (1976). [CrossRef] [PubMed]
  4. D. E. Wohlert, K. Y. Cheng, S. T. Chou, “Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry-Perot lasers,” Appl. Phys. Lett. 78, 1047–1049 (2001). [CrossRef]
  5. S. R. Mallinson, J. H. Jerman, “Miniature micromachined Fabry-Perot interferometer in silicon,” Electron. Lett. 23, 1041–1043 (1987). [CrossRef]
  6. J. S. Harper, P. A. Rosher, S. Fenning, S. R. Mallinson, “Application of miniature micromachined Fabry-Perot interferometer to optical fibre WDM system,” Electron. Lett. 25, 1065–1066 (1989). [CrossRef]
  7. J. H. Correia, M. Bartek, R. F. Wolffenbuttel, “Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range,” Sens. Actuators 76, 191–196 (1999). [CrossRef]
  8. J. H. Jerman, D. J. Clift, S. R. Mallinson, “A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support,” Sens. Actuators A 29, 151–158 (1991). [CrossRef]
  9. A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8, 393–395 (1996). [CrossRef]
  10. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyatou, D. Rondi, R. Blondeau, G. Guillot, P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998). [CrossRef]
  11. M. Aziz, J. Pfeifer, M. Wohlfarth, C. Luber, S. Wu, P. Meissner, “A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems,” IEEE Photon. Technol. Lett. 12, 1522–1524 (2000). [CrossRef]
  12. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001). [CrossRef]
  13. Product of Epoxy Technology, http://www.epotek.com/ .
  14. M. Xiang, Y. M. Cai, Y. M. Wu, J. Y. Yang, Y. L. Wang, “Experimental study of the free spectral range (FSR) in FPI with a small plate gap,” Opt. Express 11, 3147–3152 (2003), http://www.opticsexpress.org . [CrossRef] [PubMed]
  15. C. Roychoudhuri, M. Hercher, “Stable multipass Fabry-Perot interferometer: design and analysis,” Appl. Opt. 16, 2514–2520 (1977). [CrossRef] [PubMed]
  16. P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited