OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 16 — Jun. 1, 2004
  • pp: 3287–3296

Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection: a numerical study

Toshihiko Nakata and Takanori Ninomiya  »View Author Affiliations

Applied Optics, Vol. 43, Issue 16, pp. 3287-3296 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1731 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new parallel photodisplacement technique that achieves extremely high-throughput imaging is proposed, and its practical realization is studied numerically. In this technique, a linear region of photothermal displacement is excited by use of a line-focusing intensity-modulated laser beam and detected with a parallel heterodyne interferometer in which a charge-coupled device linear image sensor is used. Because of the integration and sampling effects of the sensor, the interference light is spatiotemporally multiplexed. To extract the photodisplacement component from the multiplexed sensor signal, a scheme of phase-shifting light integration under an undersampling condition is proposed for parallel interferometry. The frequencies of several control signals, including the heterodyne beat signal, modulation signal, and sensor gate signal, are optimized so as to eliminate undesirable components, allowing only the displacement component to be extracted. Preliminary numerical simulation results show that the proposed technique has the potential to perform photodisplacement imaging more than 10,000 times faster than conventional photoacoustic microscopy.

© 2004 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(040.2840) Detectors : Heterodyne
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(110.5120) Imaging systems : Photoacoustic imaging
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.5340) Other areas of optics : Photothermal effects

Original Manuscript: September 29, 2003
Revised Manuscript: February 27, 2004
Published: June 1, 2004

Toshihiko Nakata and Takanori Ninomiya, "Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection: a numerical study," Appl. Opt. 43, 3287-3296 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, New York, 1980), pp. 170–173, 295–296.
  2. Y. H. Wong, R. L. Thomas, J. J. Pouch, “Subsurface structures of solids by scanning photoacoustic microscopy,” Appl. Phys. Lett. 35, 368–369 (1979). [CrossRef]
  3. Y. H. Wong, R. L. Thomas, G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978). [CrossRef]
  4. A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the “mirage effect”,”Appl. Phys. Lett. 36, 130–132 (1980). [CrossRef]
  5. J. C. Murphy, C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980). [CrossRef]
  6. M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–755 (1983). [CrossRef]
  7. P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Physica Scripta (Sweden) 20, 659–662 (1979). [CrossRef]
  8. A. Rosencwaig, G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36, 725–727 (1980). [CrossRef]
  9. T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31-1, 146–148 (1992).
  10. B. Witowski, W. L. Smith, D. L. Willenborg, “Nondestructive technique for the detection of dislocations and stacking faults on silicon wafers,” Appl. Phys. Lett. 52, 640–642 (1988). [CrossRef]
  11. A. Rosencwaig, R. M. White, “Ion implant monitoring with thermal wave technology,” Appl. Phys. Lett. 47, 584–586 (1985). [CrossRef]
  12. H. I. Ringermacher, C. A. Kittredge, “Laser-in/laser-out photoacoustics using Doppler heterodyne interferometry,” in Proceedings of the 1986 Ultrasonic Symposium (IEEE, New York, 1986), pp. 407–410. [CrossRef]
  13. K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, R. L. Thomas, “Thermal wave imaging of closed cracks in opaque solids,” J. Appl. Phys. 54, 6245–6255 (1983). [CrossRef]
  14. I. Kaufman, P. T. Chang, H. S. Hsu, W. Y. Huang, D. Y. Shyong, “Photothermal radiometric detection and imaging of surface cracks,” J. Nondestr. Eval. 6, 87–100 (1987). [CrossRef]
  15. J. Hartikainen, “Fast photothermal measurement system for inspection of weak adhesion defects,” Appl. Phys. Lett. 55, 1188–1190 (1989). [CrossRef]
  16. S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photo-displacement imaging,” Electron. Lett. 17, 337–338 (1981). [CrossRef]
  17. N. M. Amer, M. A. Olmstead, “A novel method for the study of optical properties of surfaces,” Surf. Sci. 132, 68–72 (1983). [CrossRef]
  18. L. C. M. Miranda, “Photodisplacement spectroscopy of solids: theory,” Appl. Opt. 22, 2882–2886 (1983). [CrossRef] [PubMed]
  19. H. Takamatsu, Y. Nishimoto, Y. Nakai, “Photodisplacement measurement by interferometric laser probe,” Jpn. J. Appl. Phys. 29, 2847–2850 (1990). [CrossRef]
  20. J.-P. Monchalin, R. Heon, N. Muzak, “Evaluation of ultrasonic inspection procedures by field mapping with an optical probe,” Can. Metallurgical Quart. 25, 247–252 (1986). [CrossRef]
  21. N. A. Massie, R. D. Nelson, S. Holly, “High-performance real-time heterodyne interferometry,” Appl. Opt. 18, 1797–1803 (1979). [CrossRef] [PubMed]
  22. S. Sumie, H. Takamatsu, T. Morimoto, Y. Nishimoto, Y. Kawata, T. Horiuchi, H. Nakayama, T. Kita, T. Nishino, “Analysis of lattice defects induced by ion implantation with photo-acoustic displacement measurements,” J. Appl. Phys. 76, 5681–5689 (1994). [CrossRef]
  23. X. Maldague, J. C. Krapez, P. Cielo, D. Poussart, “Processing of thermal images for the detection and enhancement of subsurface flaws in composite materials,” NATO ASI Ser. F44, 257–285 (1988).
  24. G. Washidzu, T. Hara, R. Ichikawa, H. Takamatsu, S. Sumie, Y. Nishimoto, Y. Nakai, H. Hashizume, T. Miyoshi, “Dose and damage measurements in low dose ion implantation in silicon by photo-acoustic displacement and minority carrier lifetime,” Jpn. J. Appl. Phys. 30, 1025–1027 (1991). [CrossRef]
  25. T. Nakata, H. H. Kobayashi, T. Ninomiya, “Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration,” in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, Tokyo, 1993), pp. 81–82.
  26. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), Chap. 10.
  27. Frequency Stabilization He-Ne Laser FS-1M, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).
  28. Frequency Shifter FS-1S, product catalog (Photon Probe, Inc., 1-6-2 Higashihirayama, Hino, Tokyo 191-0054 Japan, 2003).
  29. J. T. Fanton, G. S. Kino, “High-sensitivity laser probe for photothermal measurements,” Appl. Phys. Lett. 51, 66–68 (1987). [CrossRef]
  30. CCD 191, product catalog (Fairchild Imaging, Inc., 1801 McCarthy Boulevard, Milpitas, Calif. 95035, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited