OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 16 — Jun. 1, 2004
  • pp: 3329–3334

Monitoring of Ethylene by a Pulsed Quantum Cascade Laser

Damien Weidmann, Anatoliy A. Kosterev, Chad Roller, Robert F. Curl, Matthew P. Fraser, and Frank K. Tittel  »View Author Affiliations


Applied Optics, Vol. 43, Issue 16, pp. 3329-3334 (2004)
http://dx.doi.org/10.1364/AO.43.003329


View Full Text Article

Acrobat PDF (139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development and performance of a gas sensor based on a quantum cascade laser operating at a wavelength of ~10 μm to measure ethylene (C2H4) concentrations by use of a rotational component of the fundamental ν7 band. The laser is thermoelectrically cooled and operates in a pulsed mode. The influence of pulse-to-pulse fluctuations is minimized by use of a reference beam and a single detector with time discriminating electronics. Gas absorption is recorded in a 100-m optical path-length astigmatic Herriott cell. With a 10-kHz pulse repetition rate and an 80-s total acquisition time, a noise equivalent sensitivity of 30 parts per billion has been demonstrated. The sensor has been applied to monitor C2H4 in vehicle exhaust as well as in air collected in a high-traffic urban tunnel.

© 2004 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.3420) Remote sensing and sensors : Laser sensors
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Citation
Damien Weidmann, Anatoliy A. Kosterev, Chad Roller, Robert F. Curl, Matthew P. Fraser, and Frank K. Tittel, "Monitoring of Ethylene by a Pulsed Quantum Cascade Laser," Appl. Opt. 43, 3329-3334 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-16-3329


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. H. Seinfeld, “Urban air pollution: state of the science,” Science 243, 745–752 (1989).
  2. T. H. Risby, “Volatile organic compounds as markers in normal and diseased states,” in Disease Markers in Exhaled Breath: Basic Mechanisms and Clinical Applications, N. Marczin and M. H. Yacoub, eds., Vol. 284 of NATO ASI Series A(IOS Press, Amsterdam, 2002), pp. 113–122.
  3. F. J. M. Harren, R. Berkelmans, K. Kuiper, S. te Lintel Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander, and D. H. Parker, “On-line laser photoacoustic detection of ethene in exhaled air as a biomarker of ultraviolet radiation damage of the human skin,” Appl. Phys. Lett. 74, 1761–1762 (1999).
  4. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed.(Oxford U. Press, Oxford, 1999).
  5. F. B. Abeles, P. W. Morgan, and M. E. Salveit, Jr., Ethylene in Plant Biology, 2nd ed.(Academic, San Diego, Calif., 1992).
  6. M. G. da Silva, E. O. Santos, M. S. Sthel, S. L. Cardoso, A. Cavalli, A. R. Monteiro, J. G. de Oliveira, M. G. Pereira, and H. Vargas, “Effect of heat treatment on ethylene and CO2 emissions rates during papaya (Carica papaya L.) fruit ripening,” Rev. Sci. Instrum. 74, 703–705 (2003).
  7. V. Altuzar, M. Pacheco, S. A. Tomás, J. L. Arriaga, O. Zelaya-Angel, and F. Sánchez-Sinencio, “Analysis of ethylene concentration in the Mexico City atmosphere by photoacoustic spectroscopy,” Anal. Sci. 17, 541–54 (2001).
  8. G. Giubileo, L. De Dominicis, R. Fantoni, M. Francucci, A. Congiu Castellano, M. G. Furfaro, S. Gaudenzi, A. Antonini, and C. C. Lombardi, “Photoacoustic detection of ethylene traces in biogenic gases,” Laser Phys. 12, 653–655 (2002).
  9. F. G. C. Bijnen, J. Reuss, and J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
  10. A. A. E. Martis, S. Buscher, F. Kühnemann, and W. Urban, “Simultaneous ethane and ethylene detection using a CO-overtone laser photoacoustic spectrometer: a new tool for stress/damage studies in plant physiology, Instrum. Sci. Technol. 26, 177–187 (1998).
  11. M. Mürtz, B. Frech, and W. Urban, “High resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999).
  12. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
  13. S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta A 58, 2533–2539 (2002).
  14. Q. Shi, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quantum cascade laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003).
  15. L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003).
  16. W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).
  17. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002).
  18. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser,” Appl. Opt. 39, 6866–6872 (2000).
  19. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
  20. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
  21. J. F. Brannon, Jr., and P. Varanasi, “Tunable diode laser measurements on the 951.7393 cm−1 line of 12C2H4 at planetary atmospheric temperatures,” J. Quant. Spectrosc. Radiat. Transfer 47, 237–242 (1992).
  22. G. McGaughey, N. Desai, D. Allen, R. Seila, W. Lonneman, M. Fraser, R. Harley, J. Ivy, and J. Price, “Analysis of motor vehicle emission samples collected in a Houston tunnel during the Texas Air Quality Study 2000,” prepared for the Texas Natural Resource Conservation Commission, contract 9880077600–19 (University of Texas at Austin, Austin, Texas, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited