OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3373–3381

Jones matrix for image-rotation prisms

Ivan Moreno  »View Author Affiliations


Applied Optics, Vol. 43, Issue 17, pp. 3373-3381 (2004)
http://dx.doi.org/10.1364/AO.43.003373


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The polarization-transforming properties of rotational prisms are analyzed with polarized light by using the Jones calculus and the exact ray-trace. A general expression of the Jones matrix for a rotational prism is derived, incorporating an explicit dependence on the image-rotation angle or the wave-front-rotation angle. The Jones matrix for the Pechan, Dove, Reversion, and Delta prisms is derived where the explicit dependence on the angle of rotation of the image is given. An experiment with a rotating Dove prism is also conducted to determine the output states of polarization for incident linearly polarized light. Experimental results agree with theoretical expectations.

© 2004 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(230.5480) Optical devices : Prisms
(260.5430) Physical optics : Polarization
(350.4600) Other areas of optics : Optical engineering

History
Original Manuscript: November 29, 2003
Revised Manuscript: March 9, 2004
Published: June 10, 2004

Citation
Ivan Moreno, "Jones matrix for image-rotation prisms," Appl. Opt. 43, 3373-3381 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-17-3373


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Wolfe, “Nondispersive prisms,” in Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 4.1–4.29.
  2. D. L. Sullivan, “Alignment of rotational prisms,” Appl. Opt. 11, 2028–2032 (1972). [CrossRef] [PubMed]
  3. P. R. Yoder, Design and Mounting of Prisms and Small Mirrors in Optical Instruments (SPIE Press, Bellingham, Wash., 1998), Vol. TT32, pp. 19–57.
  4. H. Fujii, Y. Ohtsuka, “Rotational filtering for randomly oriented pattern recognition,” Opt. Commun. 36, 255–257 (1981). [CrossRef]
  5. I. Moreno, G. Paez, M. Strojnik, “Dove prism with increased throughput for implementation in a rotational-shearing interferometer,” Appl. Opt. 42, 4514–4521 (2003). [CrossRef] [PubMed]
  6. M. Strojnik Scholl, G. Paez, “Simulated interferometric patterns generated by a nearby star-planet system and detected by a rotational shearing interferometer,” J. Opt. Soc. Am. A 16, 2019–2024 (1999). [CrossRef]
  7. C. Perez-Lopez, F. Mendoza Santoyo, G. Pedrini, S. Schedin, H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Appl. Opt. 40, 5106–5110 (2001). [CrossRef]
  8. P. Z. Takacs, E. L. Church, C. J. Bresloff, L. Assoufid, “Improvements in the accuracy and the repeatability of long trace profiler measurements,” Appl. Opt. 38, 5468–5479 (1999). [CrossRef]
  9. A. V. Smith, M. S. Bowers, “Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 18, 706–713 (2001). [CrossRef]
  10. D. J. Armstrong, A. V. Smith, “Demonstration of improved beam quality in an image-rotating optical parametric oscillator,” Opt. Lett. 27, 40–42 (2002). [CrossRef]
  11. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  12. J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett, “Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum,” Phys. Rev. Lett. 80, 3217–3219 (1998). [CrossRef]
  13. I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94, 3697–3702 (2003). [CrossRef]
  14. M. J. Padgett, J. P. Lesso, “Dove prisms and polarized light,” J. Mod. Opt. 46, 175–179 (1999).
  15. E. J. Galvez, C. D. Holmes, “Geometric phase of optical rotators,” J. Opt. Soc. Am. A 16, 1981–1985 (1999). [CrossRef]
  16. R. A. Chipman, “Mechanics of polarization ray tracing,” Opt. Eng. 34, 1636–1645 (1995). [CrossRef]
  17. E. Waluschka, “Polarization ray trace,” Opt. Eng. 28, 86–89 (1989). [CrossRef]
  18. M. Strojnik Scholl, “Ray trace through a corner-cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12, 1589–1592 (1995). [CrossRef]
  19. M. Strojnik, G. Paez, “Radiometry,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), Chap. 18, pp. 649–699.
  20. W. A. Shurcliff, Polarized Light (Harvard University, Cambridge, Mass., 1957).
  21. J. M. Bennett, “Polarization,” in Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), p. 5.1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited